Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange

https://doi.org/10.17221/100/2020-PSECitation:Meng L., He J., Zou Y., Wu Q., Kuča K. (2020): Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant Soil Environ., 66: 183-189.
download PDF

Glomalin released from arbuscular mycorrhizal fungi (AMF) has important roles in soil nutrient cycles, whereas contributing to glomalin-related soil protein (GRSP) fractions to soil nitrogen (N) is unknown. In this study, a two-chambered root-box that was divided into root chamber (root and mycorrhizal fungi hypha) and hypha chamber (free of the root) was used, and three AMF species including Diversispora epigaea, Paraglomus occultum, and Rhizoglomus intraradices were separately inoculated into the root chamber. Plant growth, soil total N, N content of purified GRSP fractions, and its contribution to soil total N, and leaf and root N contents were analysed. After four months, total biomass and root total length, surface area, and volume were improved by all AMF inoculations. AMF inoculations dramatically increased soil total N content in two chambers. The N content of purified easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) was 0.10 ± 0.01 mg/g and 0.16 ± 0.02 mg/g, respectively, accounted for 15.6 ± 1.6% and 18.1 ± 1.8% of soil total N, respectively. AMF inoculations stimulated the N accumulation in EE-GRSP and DE-GRSP, especially in the hypha chamber. It concluded that GRSP, especially DE-GRSP, acts as a soil N pool accounting for 33.8 ± 1.9% of soil total N in orchards.

References:
Balliu A., Sallaku G., Rewald B. (2015): AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7: 15967‒15981. https://doi.org/10.3390/su71215799
 
Bethlenfalvay G.J., Ames R.N. (1987): Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Science Society of America Journal, 51: 834‒837. https://doi.org/10.2136/sssaj1987.03615995005100030049x
 
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., Řezáčová V., Gutiérrez-Núñez M.S., Gryndler M., Jansa J. (2018): Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Mycorrhiza, 28: 269–283. https://doi.org/10.1007/s00572-018-0825-0
 
Debeljak M., van Elteren J.T., Špruk A., Izmer A., Vanhaecke F., Vogel-Mikuš K. (2018): The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize. Chemosphere, 212: 1076‒1084. https://doi.org/10.1016/j.chemosphere.2018.08.147
 
Emran M.A., Rashad M.M., Gispert M., Pardini G. (2017): Increasing soil nutrients availability and sustainability by glomalin in alkaline soils. International Journal of Agricultural and Biosystems Engineering, 2: 74‒84.
 
Etcheverría P., Huygens D., Godoy R., Borie F., Boeckx P. (2009): Arbuscular mycorrhizal fungi contribute to 13C and 15N enrichment of soil organic matter in forest soils. Soil Biology and Biochemistry, 41: 858‒861. https://doi.org/10.1016/j.soilbio.2009.01.018
 
Gillespie A.W., Farrell R.E., Walley F.L., Ross A.R.S., Leinweber P., Eckhardt K.-U., Regier T.Z., Blyth R.I.R. (2011): Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 43: 766‒777. https://doi.org/10.1016/j.soilbio.2010.12.010
 
Govindarajulu M., Pfeffer P.E., Jin H.R., Abubaker J., Douds D.D., Allen J.W., Bücking H., Lammers P.J., Shachar-Hill Y. (2005): Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435: 819‒823. https://doi.org/10.1038/nature03610
 
He J.D., Chi G.G., Zou Y.N., Shu B., Wu Q.S., Srivastava A.K., Kuča K. (2020): Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology, 154: 103592. https://doi.org/10.1016/j.apsoil.2020.103592
 
He J.D., Dong T., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2019): Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243: 64‒69. https://doi.org/10.1016/j.scienta.2018.08.010
 
Heidari M., Karami V. (2014): Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. Journal of the Saudi Society of Agricultural Sciences, 13: 9‒13. https://doi.org/10.1016/j.jssas.2012.12.002
 
Hodge A., Campbell C.D., Fitter A.H. (2001): An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413: 297–299. https://doi.org/10.1038/35095041
 
Lovelock C.E., Wright S.F., Clark D.A., Ruess R.W. (2004): Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across https://doi.org/10.1111/j.0022-0477.2004.00855.x
 
a tropical rain forest landscape. Journal of Ecology, 92: 278‒287.
 
Lü L.H., Zou Y.N., Wu Q.S. (2019): Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Communications in Soil Science and Plant Analysis, 50: 909‒921. https://doi.org/10.1080/00103624.2019.1594882
 
Marschner H., Dell B. (1994): Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159: 89‒102. https://doi.org/10.1007/BF00000098
 
Nautiyal P., Rajput R., Pandey D., Arunachalam K., Arunachalam A. (2019): Role of glomalin in soil carbon storage and its variation across land uses in temperate Himalayan regime. Biocatalysis and Agricultural Biotechnology, 21: 101311. https://doi.org/10.1016/j.bcab.2019.101311
 
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158‒161. https://doi.org/10.1016/S0007-1536(70)80110-3
 
Rillig M.C., Ramsey P.W., Morris S., Paul E.A. (2003): Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant and Soil, 253: 293‒299. https://doi.org/10.1023/A:1024807820579
 
Rillig M.C., Wright S.F., Nichols K.A., Schmidt W.F., Torn M.S. (2001): Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233: 167‒177. https://doi.org/10.1023/A:1010364221169
 
Rotter P., Malý S., Sáňka O., Sáňka M., Čižmár D., Zbíral J., Čechmánková J., Kalábová T. (2017): Is glomalin an appropriate indicator of forest soil reactive nitrogen status? Journal of Plant Nutrition and Soil Science, 180: 694‒704. https://doi.org/10.1002/jpln.201700046
 
Trouvelot S., Bonneau L., Redecker D., Van Tuinen D., Adrian M., Wipf D. (2015): Arbuscular mycorrhiza symbiosis in viticulture: https://doi.org/10.1007/s13593-015-0329-7
 
a review. Agronomy for Sustainable Development, 35: 1449‒1467.
 
Wright S.F., Upadhyaya A. (1996): Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science, 161: 575‒586. https://doi.org/10.1097/00010694-199609000-00003
 
Wright S.F., Upadhyaya A. (1998): A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 198: 97‒107. https://doi.org/10.1023/A:1004347701584
 
Wu Q.S., He J.D., Srivastava A.K., Zou Y.N., Kuča K. (2019): Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 39: 1149‒1158. https://doi.org/10.1093/treephys/tpz039
 
Wu Q.S., Li Y., Zou Y.N., He X.H. (2015): Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza, 25: 121‒130. https://doi.org/10.1007/s00572-014-0594-3
 
Wu Q.S., Srivastava A.K., Zou Y.N. (2013): AMF-induced tolerance to drought stress in citrus: a review. Scientia Horticultureae, 164: 77‒87. https://doi.org/10.1016/j.scienta.2013.09.010
 
Zhang F., Wang P., Zou Y.N., Wu Q.S., Kuča K. (2019): Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science, 65: 1316‒1330. https://doi.org/10.1080/03650340.2018.1563780
 
Zhang F., Zou Y.N., Wu Q.S., Kuča K. (2020): Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 171: 103962. https://doi.org/10.1016/j.envexpbot.2019.103926
 
Zhang Z.H., Wang Q., Wang H., Nie S.M., Liang Z.W. (2017): Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Science of The Total Environment, 581–582: 657‒665. https://doi.org/10.1016/j.scitotenv.2016.12.176
 
Zou Y.N., Srivastava A.K., Wu Q.S. (2016): Glomalin: a potential soil conditioner for perennial fruits. International Journal of Agriculture and Biology, 18: 293‒297. https://doi.org/10.17957/IJAB/15.0085
 
download PDF

© 2020 Czech Academy of Agricultural Sciences