Arsenic and selenium levels in rice fields from south-west of Spain: influence of the years of monoculture
There is a lack of information regarding the arsenic (As) and selenium (Se) concentrations in Spanish rice (Oryza sativa L.) fields and how soil conditions affect such concentration, especially those derived from the typical monoculture practiced in the studied area. To clarify these aspects, 76 soil samples and 95 grain samples were collected from 19 rice fields along the Vegas Altas area, the most important rice growing area of south-west of Spain. The results suggested a significant increase in the soil total As and Se concentrations as the number of monoculture years increased. While As concentration reached toxic levels in 12 out of the 19 locations, Se concentration in all the analysed fields could be considered as deficient. An increase of the As and Se concentration in soil produced a subsequent increase of the concentration of both elements in the rice grain. Therefore, it might be extremely important to control both levels. It would be necessary to establish different actions, including rotations with other crops, in order to remediate As accumulation and to increase Se intake.
Bogdan Katja, Schenk Manfred K. (2008): Arsenic in Rice (
Oryza sativa L.) Related to Dynamics of Arsenic and Silicic Acid in Paddy Soils. Environmental Science & Technology, 42, 7885-7890
https://doi.org/10.1021/es801194q
Díaz-Alarcón J.P., Navarro-Alarcón M., López-García de la Serrana H., López-Martínez M.C. (1996): Determination of selenium in cereals, legumes and dry fruits from southeastern Spain for calculation of daily dietary intake. Science of The Total Environment, 184, 183-189
https://doi.org/10.1016/0048-9697(96)05079-6
Elmadfa I. (2009): The European Nutrition and Health Report. Forum of Nutrition. Vol 62. Vienna, 412.
Feng Renwei, Wei Chaoyang, Tu Shuxin, Sun Xin (2009): Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany, 65, 363-368
https://doi.org/10.1016/j.envexpbot.2008.11.013
Hawkesford Malcolm J., Zhao Fang-Jie (2007): Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 46, 282-292
https://doi.org/10.1016/j.jcs.2007.02.006
IARC (International Agency Research Cancer) (2004): In Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 84: Some Drinking-Water Disinfectants and Contaminants, Including Arsenic. Vienna, World Health Organization.
Li Hua-Fen, Lombi Enzo, Stroud Jacqueline L., McGrath Steve P., Zhao Fang-Jie (2010): Selenium Speciation in Soil and Rice: Influence of Water Management and Se Fertilization. Journal of Agricultural and Food Chemistry, 58, 11837-11843
https://doi.org/10.1021/jf1026185
MARM (2014): Statistical Yearbook 2014. Ministry of Environment, Rural and Marine. Available at http://www.mapama.gob.es/es/estadistica/temas/
Matos-Reyes M.N., Cervera M.L., Campos R.C., de la Guardia M. (2010): Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements. Food Chemistry, 122, 188-194
https://doi.org/10.1016/j.foodchem.2010.02.052
Menjivar Flores J.C., Díez-Ortiz M., Aguilar-Ruiz J., Martín-Peinado F., García-Fernández I. (2009): Study of heavy metal and arsenic concentrations in olive farm soils, Sierra Mágina, Jaen, Spain. Acta Agronomy, 58: 303–307.
Poblaciones Maria J, Rodrigo Sara, Santamaria Oscar, Chen Yi, McGrath Steve P (2014): Selenium accumulation and speciation in biofortified chickpea (
Cicer arietinum L.) under Mediterranean conditions. Journal of the Science of Food and Agriculture, 94, 1101-1106
https://doi.org/10.1002/jsfa.6372
Rayman Margaret P (2012): Selenium and human health. The Lancet, 379, 1256-1268
https://doi.org/10.1016/S0140-6736(11)61452-9
Reid Mary, Duffield-Lillico Anna, Slate Elizabeth, Natarajan Nachimuthu, Turnbull Bruce, Jacobs Elizabeth, Combs Gerald, Alberts David, Clark Larry, Marshall James (2008): The Nutritional Prevention of Cancer: 400 Mcg Per Day Selenium Treatment. Nutrition and Cancer, 60, 155-163
https://doi.org/10.1080/01635580701684856
Sun Hong-Jie, Rathinasabapathi Bala, Wu Bing, Luo Jun, Pu Li-Ping, Ma Lena Q. (2014): Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 69, 148-158
https://doi.org/10.1016/j.envint.2014.04.019
Ventura Márcia Gonçalves, do Carmo Freitas Maria, Pacheco Adriano, Meerten Thea, Wolterbeek Hubert Theodore (2006): Selenium content in selected Portuguese foodstuffs. European Food Research and Technology, 224, 395-401
https://doi.org/10.1007/s00217-006-0426-6
WHO (World Health Organization) (2010): Safety Evaluation of Certain Food Contaminants. Geneva, No. 63. Available at http://www.who.int/foodsafety/chem/summary72_rev.pdf
Xu X. Y., McGrath S. P., Meharg A. A., Zhao F. J. (2008): Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environmental Science & Technology, 42, 5574-5579
https://doi.org/10.1021/es800324u
Zavala Yamily J., Duxbury John M. (2008): Arsenic in Rice: I. Estimating Normal Levels of Total Arsenic in Rice Grain. Environmental Science & Technology, 42, 3856-3860
https://doi.org/10.1021/es702747y
Zeng Huawei, Uthus Eric O., Combs Jr. Gerald F. (2005): Mechanistic aspects of the interaction between selenium and arsenic☆. Journal of Inorganic Biochemistry, 99, 1269-1274
https://doi.org/10.1016/j.jinorgbio.2005.03.006
Zhao Fang-Jie, McGrath Steve P (2009): Biofortification and phytoremediation. Current Opinion in Plant Biology, 12, 373-380
https://doi.org/10.1016/j.pbi.2009.04.005