Enhancing fruit quality of three Physalis sp. throughout foliar nutrition


Sholehah D.N., Setiawan E., Ermavitalini D., Khasanah M., Utami E.S.W., Hariyanto S., Purnobasuki H. (2022): Enhancing fruit quality of three Physalis sp. throughout foliar nutrition. Plant Soil Environ., 68: 231–236.

download PDF

Foliar nutrients containing macronutrients, micronutrients and a combination of both were applied to Physalis peruviana, P. alkekengi and P. ixocarpa to determine their effect on fruit quality. A randomised complete block design study was conducted in a greenhouse on Madura Island, Indonesia. This study showed significant interactions between Physalis species and foliar nutrition to the physicochemical character of the fruit. Each species responded differently to the given nutrients. The combination of 1 g/L macronutrient (P and K) and 0.0625 g/L micronutrients (Zn, Fe, Cu, B, Mo and Mn) resulted in the highest fruit antioxidant activity, vitamin C, total soluble solids and redness of the three Physalis species. Generally, macronutrients and micronutrients in combination can be recommended to increase the quality of Physalis fruit.

Al-Hajjaj H.S., Ayad J.Y. (2018): Effect of foliar boron applications on yield and quality of Medjool date palm. Journal of Applied Horticulture, 20: 182–189. https://doi.org/10.37855/jah.2018.v20i03.32
Arayne M.S., Sultana N., Bibi Z. (2009): Rapid and specific spectrophotometric and RP-HPLC methods for the determination of ascorbic acid in fruits juices and in human plasma. Journal of the Chemical Society of Pakistan, 31: 402–407.
Bana R.S., Jat G.S., Grover M., Bamboriya S.D., Singh D., Bansal R., Choudhary A.K., Kumar, Laing A.M., Godara S., Bana R.C., Kumar H., Kuri B.R., Yadav A., Singh T. (2022): Foliar nutrient supplementation with micronutrient embedded fertilizer increases biofortification, soil biological activity and productivity of eggplant. Scientific Reports, 12: 5146. https://doi.org/10.1038/s41598-022-09247-0
Brunetto G., De Melo G.W.B., Toselli M., Quartieri M., Tagliavini M. (2015): The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Revista Brasileira de Fruticultura, 37: 1089–1104. https://doi.org/10.1590/0100-2945-103/15
Buss J., Stratechuk K., Pinno B.D. (2018): Growth and competition among understory plants varies with reclamation soil and fertilization. Ecological Processes, 7: 12. https://doi.org/10.1186/s13717-018-0123-y
Chang C.C., Yang M.H., Wen H.M., Chern J.C. (2002): Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10: 178–182.
Fallahi E., Eichert T. (2013): Principles and practices of foliar nutrients with an emphasis on nitrogen and calcium sprays in apple. HortTechnology, 23: 542–547. https://doi.org/10.21273/HORTTECH.23.5.542
Fiaz M., Wang C., Haq M.Z.U., Haider M.S., Zheng T., Ge M.Q., Jia H.F., Jiu S.T., Fang J.G. (2021): Molecular evaluation of kyoho grape leaf and berry characteristics influenced by different NPK fertilizers. Plants (Basel), 10: 1578. https://doi.org/10.3390/plants10081578
Gupta V.K., Simlai A., Tiwari M., Bhattacharya K., Roy A. (2014): Phytochemical contents, antimicrobial and antioxidative activities of Solanum sisymbriifolium. Journal of Applied Pharmaceutical Science, 4: 75–80.
Horwitz W., Latimer G.W. (2005): Official Methods of Analysis of AOAC International. 18th Edition. Maryland, Association of Official Analytical Chemistry International.
Iwansyah A.C., Surahman D.N., Hidayat D.D., Luthfiyanti R., Indriati A., Ardiansyah C.E. (2020): Comparative evaluation of proximate composition and vitamin C of Physalis angulata Linn and Physalis peruviana Linn in West Java, Indonesia. IOP Conference Series: Earth Environmental Science, 462: 012012. https://doi.org/10.1088/1755-1315/462/1/012012
Jamaly R., Parent S.-É., Parent L.E. (2021): Fertilization and soil nutrients impact differentially cranberry yield and quality in Eastern Canada. Horticulturae, 7: 1–18. https://doi.org/10.3390/horticulturae7070191
Laczkó-Zöld E., Zupkó I., Réthy B., Csedo K., Hohmann J. (2009): Antioxidant activity of the fruits and hydrophilic compounds of Physalis alkekengi. Acta Pharmaceutica Hungaria, 79: 169–173.
Muniz J., Kretzschmar A.A., Rufato L., Pelizza T.R., Rufato A.D.R., de Macedo T.A. (2014): General aspects of Physalis cultivation. Ciência Rural, 44: 964–970. https://doi.org/10.1590/S0103-84782014005000006
Oliveira L.A., da Silva E.C., de Carlos L.A., Maciel G.M. (2019): Phosphate and potassium fertilization on agronomic and physico-chemical characteristics and bioactive compounds of eggplant. Revista Brasileira de Engenharia Agrícola e Ambiental, 23: 291–296. https://doi.org/10.1590/1807-1929/agriambi.v23n4p291-296
Oliveira S.F., Gonçalves F.J.A., Correia P.M.R., Guiné R.P.F. (2016): Physical properties of Physalis peruviana L. Open Agriculture, 1: 55–59. https://doi.org/10.1515/opag-2016-0007
Olmedo P., Zepeda B., Rojas B., Silva-Sanzana C., Delgado-Rioseco J., Fernández K., Balic I., Arriagada C., Moreno A.A., Defilippi B.G., Campos-Vargas R. (2021): Cell wall calcium and hemicellulose have a role in the fruit firmness during storage of blueberry (Vaccinium spp.). Plants (Basel), 10: 553. https://doi.org/10.3390/plants10030553
Panhwar Q.A., Naher U.A., Radziah O., Shamshuddin J., Razi I.M., Dipti S.S., Aghamolki M.T.K. (2015): Quality and antioxidant activity of rice grown on alluvial soil amended with Zn, Cu and Mo. South African Journal of Botany, 98: 77–83. https://doi.org/10.1016/j.sajb.2015.01.021
Patil P.L., Kuligod V.B., Gundlur S.S., Katti J., Nagaral I.N., Shikrashetti P., Geetanjali H.M., Dasog G.S. (2016): Soil fertility mapping in Dindur sub-watershed of Karnataka for site specific recommendations. Journal of the Indian Society of Soil Science, 64: 381–390. https://doi.org/10.5958/0974-0228.2016.00050.5
Pérez-Herrera A., Martínez-Gutiérrez G.A., Morales I., Sánchez-Medina M.A., Escamirosa-Tinoco C. (2021): Physicochemical characterization and antioxidant activity of wild Physalis spp. genotypes. Emirates Journal of Food and Agriculture, 33: 458–464. https://doi.org/10.9755/ejfa.2021.v33.i6.2710
Shenstone E., Lippman Z., van Eck J. (2020): A review of nutritional properties and health benefits of Physalis species. Plant Foods for Human Nutrition, 75: 316–325. https://doi.org/10.1007/s11130-020-00821-3
Soliman A.Sh., Hassan M., Abou-Elella F., Ahmed A.H.H., El-Feky S.A. (2016): Effect of nano and molecular phosphorus fertilizers on growth and chemical composition of baobab (Adansonia digitata L.). Journal of Plant Sciences, 11: 52–60. https://doi.org/10.3923/jps.2016.52.60
Souza C.L.M., de Souza M.O., de Oliveira R.S., do Nascimento M.N., Pelacani C.R. (2017): Biometric characteristics of fruits and physiological characterization of seeds of Physalis species (Solanaceae). Agrária – Revista Brasileira de Ciências Agrárias, 12: 277–282. https://doi.org/10.5039/agraria.v12i3a5447
Venkatesh J., Park S.W. (2014): Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies, 55: 38. https://doi.org/10.1186/1999-3110-55-38
Wei F., Shi Z.G., Wan R., Li Y.X., Wang Y.J., An W., Qin K., Cao Y.L., Chen X.Y., Wang X.Y., Yang L.B., Dai G.L., Feng J.Y. (2020): Impact of phosphorus fertilizer level on the yield and metabolome of goji fruit. Scientific Reports, 10: 1–11. https://doi.org/10.1038/s41598-020-71492-y
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti