Arsenic accumulation, speciation and bioavailability in rice cultivated in arsanilic acid exposed soil

https://doi.org/10.17221/10/2021-PSECitation:

He W.L., Li X.L., Guo S., Yang L.B., Li D. (2021): Arsenic accumulation, speciation and bioavailability in rice cultivated in arsanilic acid exposed soil. Plant Soil Environ., 67: 307–316.

 

download PDF

The present study used various amounts of P-arsanilic acid (AsA) in pot experiments to evaluate the effects of AsA on arsenic (As) accumulation, speciation and meanwhile using the in vitro digestion/Caco-2 cell model to evaluate the bioavailability of As in rice. The results indicated a linear relationship between As in rice and As in soil, and at 75 mg AsA/kg of soil, As content in rice exceeded the statutory permissible limit of 0.2 mg As/kg dry weight in China. Speciation studies indicated that inorganic As (Asi), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were the main As species in rice. Bioavailability of As experiment indicated that As uptake and transport amount by Caco-2 cells increased with increasing As accumulation in rice. In general, the content of AsA in soil reached or exceeded 75 mg/kg, which is not suitable for growing rice.

 

References:
Abedin Md.J., Cresser M.S., Meharg A.A., Feldmann J., Cotter-Howells J. (2002a): Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science and Technology, 36: 962–968. https://doi.org/10.1021/es0101678
 
Abedin Md.J., Cotter-Howells J., Meharg A.A. (2002b): Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil, 240: 311–319. https://doi.org/10.1023/A:1015792723288
 
Cohen S.M., Chowdhury A., Arnold L.L. (2016): Inorganic arsenic: a non-genotoxic carcinogen. Journal of Environmental Sciences, 49: 28–37. https://doi.org/10.1016/j.jes.2016.04.015
 
Cubadda F., Ciardullo S., D´Amato M., Raggi A., Aureli F., Carcea M. (2010): Arsenic contamination of the environment-food chain: a survey on wheat as a test plant to investigate phytoavailable arsenic in Italian agricultural soils and as a source of inorganic arsenic in the diet. Journal of Agricultural and Food Chemistry, 58: 10176–10183. https://doi.org/10.1021/jf102084p
 
Das H.K., Mitra A.K., Sengupta P.K., Hossain A., Islam F., Rabbani G.H. (2004): Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environment International, 30: 383–387. https://doi.org/10.1016/j.envint.2003.09.005
 
Ekmekcioglu C. (2002): A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems. Food Chemistry, 76: 225–230. https://doi.org/10.1016/S0308-8146(01)00291-6
 
Fisher D.J., Yonkos L.T., Staver K.W. (2015): Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA. Environmental Science and Technology, 49: 1999–2012. https://doi.org/10.1021/es504520w
 
Geng A.J., Wang X., Wu L.S., Wang F.H., Chen Y., Yang H., Zhang Z., Zhao X.L. (2017): Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil. Ecotoxicology and Environmental Safety, 137: 172–178. https://doi.org/10.1016/j.ecoenv.2016.11.030
 
He W.L., Feng Y., Li X.L., Yang X.E. (2008): Comparison of iron uptake from reduced iron powder and FeSO4 using the Caco-2 cell model: effects of ascorbic acid, phytic acid, and pH. Journal of Agricultural and Food Chemistry, 56: 2637–2642. https://doi.org/10.1021/jf0730946
 
He Y., Pedigo C.E., Lam B., Cheng Z.Q., Zheng Y. (2012): Bioaccessibility of arsenic in various types of rice in an in vitro gastrointestinal fluid system. Journal of Environmental Science and Health, Part B, 47: 74–80. https://doi.org/10.1080/03601234.2012.611431
 
Huang L., Yao L., He Z., Zhou C., Li G., Yang B., Deng X. (2014): Roxarsone and its metabolites in chicken manure significantly enhance the uptake of As species by IARC (International Agency for Research on Cancer) 2012. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100C: Arsenic, Metals, Fibres, and Dusts. Lyon, International Agency for Research on Cancer. https://doi.org/10.1016/j.chemosphere.2013.12.074
 
Juhasz A.L., Smith E., Weber J., Rees M., Rofe A., Kuchel T., Sansom L., Naidu R. (2006): In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environmental Health Perspectives, 114: 1826–1831. https://doi.org/10.1289/ehp.9322
 
Juskelis R., Li W.X., Nelson J., Jack C.C. (2013): Arsenic speciation in rice cereals for infants. Journal of Agricultural and Food Chemistry, 61: 10670–10676. https://doi.org/10.1021/jf401873z
 
Laparra J.M., Vélez D., Barberá R., Farré R., Montoro R. (2005): Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. Journal of Agricultural and Food Chemistry, 53: 8829–8833. https://doi.org/10.1021/jf051365b
 
Li G., Sun G.X., Williams P.N., Nunes L., Zhu Y.G. (2011): Inorganic arsenic in Chinese food and its cancer risk. Environment International, 37: 1219–1225. https://doi.org/10.1016/j.envint.2011.05.007
 
Lin K., Lu S.Y., Wang J., Yang Y.Y. (2015): The arsenic contamination of rice in Guangdong Province, the most economically dynamic provinces of China: arsenic speciation and its potential health risk. Environmental Geochemistry and Health, 37: 353–361. https://doi.org/10.1007/s10653-014-9652-1
 
Liu X.P., Zhang W.F., Hu Y., Hu E., Xie X., Wang L., Cheng H. (2015): Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs). Chemosphere, 119: 273–281. https://doi.org/10.1016/j.chemosphere.2014.06.067
 
Lu Y., Adomako E.E., Solaiman A.R.M., Islam M.R., Deacon C., Williams P.N., Rahman G.K.M.M., Meharg A.A. (2009): Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice. Environmental Science and Technology, 43: 1724–1729. https://doi.org/10.1021/es802794w
 
Lung’aho M.G., Mwaniki A.M., Szalma S.J., Hart J.J., Rutzke M.A., Kochian L.V., Glahn R.P., Hoekenga O.A. (2011): Genetic and physiological analysis of iron biofortification in maize kernels. PlosOne, 6: e20429. https://doi.org/10.1371/journal.pone.0020429
 
MacCallum A., Hardy S.P., Everest P.H. (2005): Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. Microbiology, 151: 2451–2458. https://doi.org/10.1099/mic.0.27950-0
 
Mangalgiri K.P., Adak A., Blaney L. (2015): Organoarsenicals in poultry litter: detection, fate, and toxicity. Environment International, 75: 68–80. https://doi.org/10.1016/j.envint.2014.10.022
 
Maull E.A., Ahsan H., Edwards J., Longnecker M.P., Navas-Acien A., Pi J.B., Silbergeld E.K., Styblo M., Tseng C.H., Thayer K.A., Loomis D. (2012): Evaluation of the association between arsenic and diabetes: a national toxicology program workshop review. Environmental Health Perspectives, 120: 1658–1670. https://doi.org/10.1289/ehp.1104579
 
Meharg A.A., Rahman Md.M. (2003): Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37: 229–234. https://doi.org/10.1021/es0259842
 
Meharg A.A., Williams P.N., Adomako E., Lawgali Y.Y., Deacon C., Villada A., Cambell R.C.J., Sun G.X., Zhu Y.G., Feldmann J., Raab A., Zhao F.J., Islam R., Hossain S., Yanai J.T. (2009): Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology, 43: 1612–1617. https://doi.org/10.1021/es802612a
 
National Food Authority (1993): Australian Food Standard Code. Camberra, Australian Government Publication Service.
 
Naujokas M.F., Anderson B., Ahsan H., Aposhian H.V., Graziano J.H., Thompson C., Suk W.A. (2013): The broad scope of health effects from chronic arsenic exposure: update on a worlwide public health problem. Environmental Health Perspectives, 121: 295–302. https://doi.org/10.1289/ehp.1205875
 
Qu H.O., Mudalige T.K., Linder S.W. (2015): Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion. Journal of Agricultural and Food Chemistry, 63: 3153–3160. https://doi.org/10.1021/acs.jafc.5b00446
 
Raab A., Williams P.N., Meharg A., Feldmann J. (2007): Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry Letters, 4: 197–203. https://doi.org/10.1071/EN06079
 
Rahman M.A., Hasegawa H., Rahman M.M., Miah M.A.M., Tasmin A. (2008): Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicology and Environmental Safety, 69: 317–324. https://doi.org/10.1016/j.ecoenv.2007.01.005
 
Rahman M.A., Rahman M.M., Reichman S.M., Lim R.P., Naidu R. (2014): Arsenic speciation in Australian-grown and imported rice on sale in Australia: implications for human health risk. Journal of Agricultural and Food Chemistry, 62: 6016–6024. https://doi.org/10.1021/jf501077w
 
Signes-Pastor A.J., Mitra K., Sarkhel S., Hobbes M., Burló F., de Groot W.T., Carbonell-Barrachina A.A. (2008): Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of west Bengal, India. Journal of Agricultural and Food Chemistry, 56: 9469–9474. https://doi.org/10.1021/jf801600j
 
Smith E., Juhasz A.L., Weber J., Naidu R. (2008): Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. The Science of the Total Environment, 392: 277–283. https://doi.org/10.1016/j.scitotenv.2007.11.023
 
Sohn E. (2014): Contamination: the toxic side of rice. Nature, 514: S62–63. https://doi.org/10.1038/514S62a
 
Straw B., Dewey C., Kober J., Henry S.C. (2002): Factors associated with death due to hemorrhagic bowel syndrome in two large commercial swine farms. Journal of Swine Health and Production, 10: 75–79.
 
Wang H.L., Hu Z.H., Tong Z.L., Xu Q., Wang W., Yuan S.J. (2014): Effect of arsanilic acid on anaerobic methanogenic process: kinetics, inhibition and biotransformation analysis. Biochemical Engineering Journal, 91: 179–185. https://doi.org/10.1016/j.bej.2014.08.011
 
Wei Y.Y., Shohag M.J.I., Yang X., Zhang Y.B. (2012): Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. Journal of Agricultural and Food Chemistry, 60: 11433–11439. https://doi.org/10.1021/jf3036462
 
Weng H.X., Zhang H.Y., Zou L.J., Zhang X.M., Liu G.S. (2000): Natural existence of arsenic in soil of China and its cause of formation. Journal of Zhejiang University (Engineering Science Edition), 34: 88–92. (In Chinese)
 
Williams P.N., Price A.H., Raab A., Hossain S.A., Feldmann J., Meharg A.A. (2005): Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39: 5531–5540. https://doi.org/10.1021/es0502324
 
Williams P.N., Villada A., Deacon C., Raab A., Figuerola J., Green A.J., Feldmann J., Meharg A.A. (2007): Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science and Technology, 41: 6854–6859. https://doi.org/10.1021/es070627i
 
Yao L.X., Huang L.X., He Z.H., Zhou C.M., Li G.L. (2013): Occurrence of arsenic impurities in organoarsenics and animal feeds. Journal of Agricultural and Food Chemistry, 61: 320–324. https://doi.org/10.1021/jf3045022
 
Yao L.X., Li G.L., Dang Z. (2006): Major chemical components of poultry and livestock manures under intensive breeding. Journal of Applied Ecology, 17: 1989–1992.
 
Yao L.X., Li G.L., Dang Z., He Z.H., Zhou C.M., Yang B.M. (2009): Arsenic speciation in turnip as affected by application of chicken manure bearing roxarsone and its metabolites. Plant and Soil, 316: 117–124. https://doi.org/10.1007/s11104-008-9764-4
 
Yao L.X., Li G.L., Dang Z., Yang B.M., He Z.H., Zhou C.M. (2010): Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply. Environmental Toxicology and Chemistry, 29: 947–951. https://doi.org/10.1002/etc.114
 
Zavala Y.J., Gerads R., Gürleyük H., Duxbury J.M. (2008): Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environmental Science and Technology, 42: 3861–3866. https://doi.org/10.1021/es702748q
 
Zhang F.F., Wang W., Yuan S.J., Hu Z.H. (2014): Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. Journal of Hazardous Materials, 279: 562–568. https://doi.org/10.1016/j.jhazmat.2014.07.047
 
Zhao F.J., Ma J.F., Meharg A.A., McGrath S.P. (2009): Arsenic uptake and metabolism in plants. New Phytologist, 181: 777–794. https://doi.org/10.1111/j.1469-8137.2008.02716.x
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti