Effect of fertilisation on fungal community in topsoil of winter wheat field

https://doi.org/10.17221/117/2022-PSECitation:

Zhai F.H., Li T.L., Qin X.R., Zhao X.D., Jiang L.W., Xie Y.H. (2022): Effect of fertilisation on fungal community in topsoil of winter wheat field. Plant Soil Environ., 68: 317–327.

download PDF

Soil fungi played important roles in the maintenance of soil fertility and soil sustainable development. In this study, the effects of different fertilisers (i.e. bacterial fertiliser (BF), composed of organic matters and bacteria; mineral fertiliser (MF), composed of N, P and K) on soil fungi in wheat field were analysed. The results showed that the yield of winter wheat with BF was 4 788.52 kg/ha, which was significantly higher than that with term MF. Chao 1
and Shannon indexes and principal coordinates analysis showed that fertilisation increased the richness of soil fungi to varying degrees and changed the fungal community structure of soil compared with no fertiliser control (NF). The soil fungal community was mainly composed of Ascomycota, Basidiomycota and Mortierellomycota, with Ascomycota as the main species (62.67–65.08%). Compared with MF, the relative abundance of potential beneficial fungi Talaromyces in BF increased 4.44 times. Compared with no fertiliser control, the relative abundance of potential beneficial fungi Chrysosporium in BF increased 4.11 times. The abundance of potential soil pathogenic fungi (P < 0.01), like Stachybotrys, Acrocalymma, Achroiostachys, Arachnomyces and Setophoma, significantly decreased in BF treatment, which was beneficial to the maintenance of crop health and the sustainable development of the environment. Moreover, the network analysis showed that the interspecific relationship of soil fungi in BF was more intimate than MF and NF and fungi were inclined to adopt cooperative manner to adapt ecological niches in BF treatment. The improvement of wheat yield might be due to the optimisation of soil fungal community structure by applying BF, which strengthened the transformation of nutrients in soil, increased some biocontrol microorganism, and reduced the crop disease. The results explain the improvement of wheat yield by BF to a certain extent, and provided theoretical basis for high-yield cultivation of wheat.

References:
Adams R.I., Miletto M., Taylor J.W., Bruns T.D. (2013): Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal, 7: 1262–1273. https://doi.org/10.1038/ismej.2013.28
 
Alcorn J.L., Irwin J.A.G. (1987): Acrocalymma medicaginis gen. et sp. nov. causing root and crown rot of Medicago sativa in Australia. Transactions of the British Mycological Society, 88: 163–167. https://doi.org/10.1016/S0007-1536(87)80211-5
 
Ansari R.A., Mahmood I. (2017): Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226: 1–9. https://doi.org/10.1016/j.scienta.2017.07.033
 
Ashworth A.J., DeBruyn J.M., Allen F.L., Radosevich M., Owens P.R. (2017): Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biology and Biochemistry, 114: 210–219. https://doi.org/10.1016/j.soilbio.2017.07.019
 
Biermaier B., Gottschalk C., Schwaiger K., Gareis M. (2015): Occurrence of Stachybotrys chartarum chemotype S in dried culinary herbs. Mycotoxin Research, 31: 23–32. https://doi.org/10.1007/s12550-014-0213-3
 
Côrtes M.V.d.C.B., Oliveira M.I.d.S., Mateus J.R., Seldin L., Silva-Lobo V.L., Freire D.M.G. (2021): A pipeline for the genetic improvement of a biological control agent enhances its potential for controlling soil-borne plant pathogens. Biological Control, 152: 104460. https://doi.org/10.1016/j.biocontrol.2020.104460
 
Da Silva M., Umbuzeiro G.A., Pfenning L.H., Canhos V.P., Esposito E. (2010): Filamentous fungi isolated from estuarine sediments contaminated with industrial discharges. Soil and Sediment Contamination, 12: 345–356. https://doi.org/10.1080/713610976
 
Das K., Lee S.Y., Choi H.W., Eom A.H., Cho Y.J., Jung H.Y. (2020): Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: new records from soil in Korea. Mycobiology, 48: 450–463. https://doi.org/10.1080/12298093.2020.1830741
 
Došen I., Andersen B., Phippen C.B.W., Clausen G., Nielsen K.F. (2016): Stachybotrys mycotoxins: from culture extracts to dust samples. Analytical Bioanalytical Chemistry, 408: 5513–5526. https://doi.org/10.1007/s00216-016-9649-y
 
Etzel R.A. (2007): Indoor and outdoor air pollution: tobacco smoke, moulds and diseases in infants and children. International Journal of Hygiene and Environmental Health, 210: 611–616. https://doi.org/10.1016/j.ijheh.2007.07.016
 
Fan B., Dewapriya P., Li F., Grauso L., Blümel M., Mangoni A., Tasdemir D. (2020): Pyrenosetin D, a new pentacyclic decalinoyltetramic acid derivative from the algicolous fungus Pyrenochaetopsis sp. FVE-087. Marine Drugs, 18: 281. https://doi.org/10.3390/md18060281
 
Fujii T., Hoshino T., Inoue H., Yano S. (2014): Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiology Letters, 351: 32–41. https://doi.org/10.1111/1574-6968.12352
 
Gao C., Montoya L., Xu L., Madera M., Hollingsworth J., Purdom E., Singan V., Vogel J., Hutmacher R.B., Dahlberg J.A., Coleman-Derr D., Lemaux P.G., Taylor J.W. (2020): Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communication, 11: 34. https://doi.org/10.1038/s41467-019-13913-9
 
Gibas C.F.C., Sigler L., Summerbelly R.C., Hofstader S.L.R., Gupta A.K. (2002): Arachnomyces kanei (anamorph Onychocola kanei) sp. nov., from human nails. Medical Mycology, 40: 573–580. https://doi.org/10.1080/mmy.40.6.573.580
 
Giraldo A., Gené J., Sutton D.A., Madrid H., de Hoog G.S., Cano J., Decock C., Crous P.W., Guarro J. (2015): Phylogeny of Sarocladium (Hypocreales). Persoonia, 34: 10–24. https://doi.org/10.3767/003158515X685364
 
Goyari S., Devi S.H., Bengyella L., Khan M., Sharma C.K., Kalita M.C., Talukdar N.C. (2015): Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secretory enzymes. Journal of Applied Microbiology, 119: 88–98. https://doi.org/10.1111/jam.12816
 
Jarvis B.B., Lee Y.W., Cömezoglu S.N., Yatawara C.S. (1986): Trichothecenes produced by Stachybotrys atra from Eastern Europe. Applied and Environmental Microbiology, 5: 915–918. https://doi.org/10.1128/aem.51.5.915-918.1986
 
Jarvis B.B., Sorenson W.G., Hintikka E.L., Nikulin M., Zhou Y., Jiang J., Wang S., Hinkley S., Etzel R.A., Dearborn D. (1998): Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Applied and Environmental Microbiology, 10: 3620–3625. https://doi.org/10.1128/AEM.64.10.3620-3625.1998
 
Jayasiri S.C., Hyde K.D., Jones E.B.G., McKenzie E.H.C., Jeewon R., Phillips A.J.L., Bhat D.J., Wanasinghe D.N., Liu J.K., Lu Y.Z., Kang J.C., Xu J., Karunarathna S.C. (2019): Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere, 10: 1–186. https://doi.org/10.5943/mycosphere/10/1/1
 
Kara Ö., Bolat İ. (2007): Influence of soil compaction on microfungal community structure in two soil types in Bartin province, Turkey. Journal of Basic Microbiology, 47: 394–399. https://doi.org/10.1002/jobm.200710341
 
Kohno J., Hirano N., Sugawara K., Nishio M., Hashiyama T., Nakanishi N., Komatsubara S. (2001): Structure of TMC-69, a new antitumor antibiotic from Chrysosporium sp. TC 1068. Tetrahedron, 57: 1731–1735. https://doi.org/10.1016/S0040-4020(01)00009-6
 
Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Réblová M., Groenewald J.Z., Crous P.W. (2016): Generic hyper-diversity in Stachybotriaceae. Persoonia, 36: 156–246. https://doi.org/10.3767/003158516X691582
 
Maity A., Pal R.K., Chandra R., Singh N.V. (2014): Penicillium pinophilum – a novel microorganism for nutrient management in pomegranate (Punica granatum L.). Scientia Horticulturae, 169: 111–117. https://doi.org/10.1016/j.scienta.2014.02.001
 
Markovskaja S., Kačergius A. (2014): Morphological and molecular characterisation of Periconia pseudobyssoides sp. nov. and closely related P. byssoides. Mycological Progress, 13: 291–302. https://doi.org/10.1007/s11557-013-0914-6
 
Miyake T., Kato A., Tateishi H., Teraoka T., Arie T. (2012): Mode of action of Talaromyces sp. KNB422, a biocontrol agent against rice seedling diseases. Journal of Pesticide Science, 37: 1–6. https://doi.org/10.1584/jpestics.D11-002
 
Naraghi L., Heydari A., Rezaee S., Razavi M. (2012): Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. Journal of Plant Growth Regulation, 31: 471–477. https://doi.org/10.1007/s00344-011-9256-2
 
Naraghi L., Heydari A., Rezaee S., Razavi M., Jahanifar H. (2010): Study on antagonistic effects of Talaromyces flavus on Verticillium albo-atrum, the causal agent of potato wilt disease. Crop Protection, 29: 658–662. https://doi.org/10.1016/j.cropro.2010.01.011
 
Nielsen K.F., Holm G., Uttrup L.P., Nielsen P.A. (2004): Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. International Biodeterioration and Biodegradation, 54: 325–336. https://doi.org/10.1016/j.ibiod.2004.05.002
 
Orio A.A.G., Brücher E., Ducasse D.A. (2015): A strain of Bacillus subtilis subsp. subtilis shows a specific antagonistic activity against the soil-borne pathogen of onion Setophoma terrestris. European Journal of Plant Pathology, 144: 217–223. https://doi.org/10.1007/s10658-015-0762-0
 
Paungfoo-Lonhienne C., Yeoh Y.K., Kasinadhuni N.R.P., Lonhienne T.G.A., Robinson N., Hugenholtz P., Ragan M.A., Schmidt S. (2015): Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 5: 8678. https://doi.org/10.1038/srep08678
 
Prasannakumar M.K., Parivallal P.B., Pramesh D., Mahesh H.B., Raj E. (2021): LAMP-based foldable microdevice platform for the rapid detection of Magnaporthe oryzae and Sarocladium oryzae in rice seed. Scientific Reports, 11: 178. https://doi.org/10.1038/s41598-020-80644-z
 
Rivera-Méndez W., Brenes-Madriz J., Alvarado-Marchena L. (2021): Effect of Setophoma terrestris, Sclerotium cepivorum, and Trichoderma spp. on in vitro onion (Allium cepa) root tissues and the final yield at the field. European Journal of Plant Pathology, 160: 53–65. https://doi.org/10.1007/s10658-021-02220-z
 
Siciliano S.D., Palmer A.S., Winsley T., Lamb E., Bissett A., Brown M.V., van Dorst J., Ji M., Ferrari B.C., Grogan P., Chu H., Snape I. (2014): Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry, 78: 10–20. https://doi.org/10.1016/j.soilbio.2014.07.005
 
Sun B.D., Zhou Y.G., Chen A.J., Houbraken J. (2019): Phylogeny and a new species of the genus Arachnomyces (Arachnomycetaceae). Phytotaxa, 394: 89–97. https://doi.org/10.11646/phytotaxa.394.1.6
 
Tsipouras A., Goetz M.A., Hensens O.D., Liesch J.M., Ostlind D.A., Williamson J.M., Dombrowski A.W., Ball R.G., Singh S.B. (1997): Sporandol: a novel antiparasitic binaphthalene from Chrysosporium meridarium. Bioorganic and Medicinal Chemistry Letters, 7: 1279–1282. https://doi.org/10.1016/S0960-894X(97)00226-6
 
Ulrich S., Niessen L., Ekruth J., Schäfer C., Kaltner F., Gottschalk C. (2020): Truncated satratoxin gene clusters in selected isolates of the atranone chemotype of Stachybotrys chartarum (Ehrenb.) S. Hughes. Mycotoxin Research, 36: 83–91. https://doi.org/10.1007/s12550-019-00371-x
 
Wang J., Song Y., Ma T., Raza W., Li J., Howland J.G., Huang Q., Shen Q. (2017): Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 112: 42–50. https://doi.org/10.1016/j.apsoil.2017.01.005
 
Yadav B.K., Tarafdar J.C. (2011): Penicillium purpurogenum, unique P mobilizers in arid agro-ecosystems. Arid Land Research and Management, 25: 87–99. https://doi.org/10.1080/15324982.2010.528151
 
Yamagiwa Y., Inagaki Y., Ichinose Y., Toyoda K., Hyakumachi M., Shiraishi T. (2011): Talaromyces wortmannii FS2 emits ß-caryphyllene, which promotes plant growth and induces resistance. Journal of General Plant Pathology, 77: 336–341. https://doi.org/10.1007/s10327-011-0340-z
 
Yamashita M., Kawai Y., Uchida I., Komori T., Kohsaka M., Imanaka H., Sakane K., Setoi H., Teraji T. (1984): Structure and total synthesis of chryscandin, a new antifungal antibiotic. Tetrahedron Letters, 41: 4489–4692. https://doi.org/10.1016/S0040-4039(01)91235-3
 
Yang Y., Cheng H., Dou Y., An S. (2020): Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau. Science of the Total Environment, 708: 134560. https://doi.org/10.1016/j.scitotenv.2019.134560
 
Yao H., Jiao X., Wu F. (2006): Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant and Soil, 284: 195–203. https://doi.org/10.1007/s11104-006-0023-2
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti