Changing in the production of anticancer drugs (vinblastine and vincristine) in Catharanthus roseus (L.) G. Don by potassium and ascorbic acid treatments

https://doi.org/10.17221/121/2021-PSECitation:

Sahi N., Mostajeran A., Ghanadian M. (2022): Changing in the production of anticancer drugs (vinblastine and vincristine) in Catharanthus roseus (L.) G. Don by potassium and ascorbic acid treatments. Plant Soil Environ., 68: 18–28.

 

download PDF

Catharanthus roseus seedling was treated with different concentrations (1.5, 3.16, 15, and 30 mmol) and forms (K2SO4 and KNO3) of potassium (K+) via Hoagland’s nutrient solution. Ascorbic acid (AsA) was sprayed twice (plant days 68 and 78) with different concentrations (750 and 1 500 mg/L) on the leaves. Vinblastine, vincristine, tryptophan contents, D4H and DAT genes expression, peroxidase activity, and H2O2 content of leaves were measured. Potassium in KNO3 form increased vinblastine (60%) and vincristine (50%), compared to 30% and 20% using K2SO4. Vinblastine and vincristine inhibit microtubule assembly and ultimately metaphase-arrested caused by the polymerisation. The genes expression was higher 3 times in KNO3 and 2.5 times in K2SO4 in excess of K+. Foliar application of 750 mg/L AsA led to an increase in vinblastine (20%) and vincristine (16%). Both concentrations of AsA had the same additional effect on the expression of D4H and DAT about 30% and 60%, respectively, compared to the control plant. Tryptophan decreased 2.5 times in excess of K+ and 35% due to the exterior of AsA. H2O2 decreased while peroxidase activity increased along with AsA treatment. A positive interaction existed between the K+ and AsA on the amount of vinblastine, vincristine, tryptophan, and gene expression.

 

References:
Ali L., Alsanius B.W., Rosberg A.K., Svensson B., Nielsen T., Olsson M.E. (2012): Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. European Food Research and Technology, 234: 33–44.  https://doi.org/10.1007/s00217-011-1604-8
 
Armengaud P., Breitling R., Amtmann A. (2004): The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology, 136: 2556–2576. https://doi.org/10.1104/pp.104.046482
 
Ashley M.K., Grant M., Grabov A. (2006): Plant responses to potassium deficiencies: a role for potassium transport proteins. Journal of Experimental Botany, 57: 425–436. https://doi.org/10.1093/jxb/erj034
 
Aziz A., Akram N.A., Ashraf M. (2017): Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 123: 192–203. https://doi.org/10.1016/j.plaphy.2017.12.004
 
Bagnyukova T.V., Serebriiskii I.G., Zhou Y., Hopper-Borge E.A., Golemis E.A., Astsaturov I. (2010): Chemotherapy and signaling: how can targeted therapies supercharge cytotoxic agents? Cancer Biology and Therapy, 10: 839–853. https://doi.org/10.4161/cbt.10.9.13738
 
Bassuony F.M., Hassanein R.A., Baraka D.M., Khalil R.R. (2008): Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress II – changes in nitrogen constituent, protein profiles, protease enzyme and certain inorganic cations. Australian Journal of Basic and Applied Sciences, 2: 350–359.
 
Bhojwani S.S., Razdan M.K. (1986): Plant Tissue Culture: Theory and Practice. Amsterdam, Elsevier. ISBN: 9780080539096
 
Devi B.S.R., Kim Y.J., Selvi S.K., Gayathri S., Altanzul K., Parvin S., Yang D.U., Lee O.R., Lee S., Yang D.C. (2012): Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in panax ginseng. Russian Journal of Plant Physiology, 59: 318–325. https://doi.org/10.1134/S1021443712030041
 
Dias M.I., Sousa M.J., Alves R.C., Ferreira I.C. (2016): Exploring plant tissue culture to improve the production of phenolic compounds: a review. Industrial Crops and Products, 82: 9–22. https://doi.org/10.1016/j.indcrop.2015.12.016
 
Dixon R.A. (2001): Natural products and plant disease resistance. Nature, 411: 843–847. https://doi.org/10.1038/35081178
 
Dreyer I., Uozumi N. (2011): Potassium channels in plant cells. The FEBS Journal, 278: 4293–4303. https://doi.org/10.1111/j.1742-4658.2011.08371.x
 
Dutkiewicz E.P., Su C., Lee H., Hsu C., Yang Y. (2020): Visualizing vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry. The Plant Journal, 105: 1123–1133. https://doi.org/10.1111/tpj.15092
 
El-Morsy A., Ezzat A., El-Deen U.S. (2010): Effect of some phosphorus and potassium rates and foliar spray with antioxidants on growth, yield and yield quality of garlic (Allium sativum L.). Annals of Agricultural Science Moshtohor Journal, 48: 27–40.
 
El-Sayed M., Verpoorte R. (2007): Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochemistry Reviews, 6: 277–305. https://doi.org/10.1007/s11101-006-9047-8
 
El-Seifi S., Hassan M., Serg S.M., El-Deen U.S., Mohamed M. (2014): Effect of calcium, potassium and some antioxidants on growth, yield and storability of sweet potato. Annals of Agricultural Science Moshtohor Journal, 52: 1–17.
 
Hamamoto S., Horie T., Hauser F., Deinlein U., Schroeder J.I., Uozumi N. (2015): HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Current Opinion in Biotechnology, 32: 113–120. https://doi.org/10.1016/j.copbio.2014.11.025
 
Hedrich R. (2012): Ion channels in plants. Physiological Reviews, 92: 1777–1811. https://doi.org/10.1152/physrev.00038.2011
 
Hemmati N., Azizi M., Spinab R., Dupire F., Arouei H., Saeedi M., Laurain-Mattar D. (2020): Accumulation of ajmalicine and vinblastine in cell cultures is enhanced by endophytic fungi of Catharanthus roseus cv. Icy Pink. Industrial Crops and Products, 158: 112776. https://doi.org/10.1016/j.indcrop.2020.112776
 
Herrera-Martínez S., Mora-Herrera M., García-Velasco R., Gomora-Rasso J., Rogel-Millán G. (2013): Effect of ascorbic acid on growth, photosynthetic pigments and peroxidase activity of rosebush. Terra Latinoamericana, 31: 193–199.
 
Hisiger S., Jolicoeur M. (2007): Analysis of Catharanthus roseus alkaloids by HPLC. Phytochemistry Reviews, 6: 207–234. https://doi.org/10.1007/s11101-006-9036-y
 
Hsiao T.C., Hageman R., Tyner E. (1970): Effects of potassium nutrition on protein and total free amino acids in Zea mays. Crop Science, 10: 78–82. https://doi.org/10.2135/cropsci1970.0011183X001000010029x
 
Ibrahim M.H., Jaafar H.Z., Karimi E., Ghasemzadeh A. (2012): Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) exposed to potassium fertilization under greenhouse conditions. International Journal of Molecular Sciences, 13: 15321–15342. https://doi.org/10.3390/ijms131115321
 
Ishikawa H., Colby D.A., Seto S., Va P., Tam A., Kakei H., Rayl T.J., Hwang I., Boger D.L. (2009): Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. Journal of the American Chemical Society, 131: 4904–4916. https://doi.org/10.1021/ja809842b
 
Lehman R., Rice E. (1972): Effect of deficiencies of nitrogen, potassium and sulfur on chlorogenic acids and scopolin in sunflower. The American Midland Naturalist Journal, 87: 71–80. https://doi.org/10.2307/2423882
 
Li W.H., Xu G.H., Alli A., Yu L. (2018): Plant HAK/KUP/KT K+ transporters: function and regulation. Seminars in Cell and Developmental Biology, 74: 133–141. https://doi.org/10.1016/j.semcdb.2017.07.009
 
Li C.X., Galani S., Hassan F.-Ul, Rashid Z., Naveed M., Fang D.D., Ashraf A., Qi W., Arif A., Saeed M., Chishti A.A., Li J.H. (2020): Biotechnological approaches to the production of plant-derived promising anticancer agents: an update and overview. Biomedicine and Pharmacotherapy, 132: 110918. https://doi.org/10.1016/j.biopha.2020.110918
 
Liu T., Huang Y., Jiang L., Dong C., Gou Y., Lian J. (2021): Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae. Communications Biology, 4: 1–9. https://doi.org/10.1038/s42003-021-02617-w
 
Liu Y., Zha D.X., Zu Y., Tang Z.H., Zhang Z.H., Jiang Y., Shi D.Y. (2011): Effects of low light on terpenoid indole alkaloid accumulation and related biosynthetic pathway gene expression in leaves of Catharanthus roseus seedlings. Botanical Studies, 52: 191–196.
 
Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402–408. https://doi.org/10.1006/meth.2001.1262
 
Loraine S., Mendoza-Espinoza J.A. (2010): Medicinal plants as potential agents against cancer, relevance for Mexico. Revista Mexicana de Ciencias Farmacéuticas, 41: 18–27.
 
Ma T.L., Wu W.H., Wang Y. (2012): Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biolology, 12: 1–8.
 
Min K., Chen K., Arora R.A. (2020): Metabolomics study of ascorbic acid-induced in situ freezing tolerance in spinach (Spinacia oleracea L.). Plant Direct, 4: 1–13. https://doi.org/10.1002/pld3.202
 
Mohsen A.A., Ebrahim M.K.H., Ghoraba W.F.S. (2013): Effect of salinity stress on Vicia faba productivity with respect to ascorbic acid treatment. Iranian Journal of Plant Physiology, 3: 725–736.
 
Nieves-Cordones M., Aleman F., Martinez V., Rubio F. (2014): K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. Journal of Plant Physiology, 171: 688–695. https://doi.org/10.1016/j.jplph.2013.09.021
 
Ragel P., Raddatz N., Leidi O.E., Quintero J.F., Pardo M.J. (2019): Regulation of K+ nutrition in plants. Frontiers in Plant Science, 281: 1–21. https://doi.org/10.3389/fpls.2019.00281
 
Roepke J., Salim V., Wu M., Thamm A.M.K., Murata J., Ploss K., Boland W., De Luca V. (2010): Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proceedings of the National Academy of Sciences of the United States of America, 24: 15287–15292. https://doi.org/10.1073/pnas.0911451107
 
Plewa M.J., Smith S.R., Wagner E.D. (1991): Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research, 247: 57–64. https://doi.org/10.1016/0027-5107(91)90033-K
 
Prajapati K., Modi H. (2012): The importance of potassium in plant growth – a review. Indian Journal of Plant Physiology, 1: 177–186.
 
Qian H., Peng X., Han X., Ren J., Zhan K., Zhu M. (2014): The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana. Russian Journal of Plant Physiology, 61: 467–475. https://doi.org/10.1134/S1021443714040141
 
Sajadi S., Verpoorte R. (2000): Photochemical investigation of vinblastine in 43 cultivars of Catharanthus roseus L. Journal of Research in Medical Sciences, 5: 21–23.
 
Salmanizadeh H., Sahi N. (2020): Determination of amino acid profile for argininosuccinic aciduria disorder using high-performance liquid chromatography with fluorescence detection. Acta Biochimica Polonica, 67: 347–351. https://doi.org/10.18388/abp.2020_5164
 
Vázquez-Flota F., Hernández-Dominguez E., de Lourdes Miranda-Ham M., Monforte-González M. (2009): A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnology Letters, 31: 591–595. https://doi.org/10.1007/s10529-008-9881-4
 
Velikova V., Yordanov I., Edreva A. (2000): Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151: 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
 
Verpoorte R., Contin A., Memelink J. (2002): Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1: 13–25. https://doi.org/10.1023/A:1015871916833
 
Wang X., Pan Y.J., Chang B.W., Hu Y.B., Guo X.R., Tang Z. (2016): Ethylene-induced vinblastine accumulation is related to activated expression of downstream TIA pathway eenes in Catharanthus roseus. BioMed Research International, 2016: 1–8.
 
Yamamoto K., Takahashi K., Caputi L., Mizuno H., Rodriguez-Lopez C.E., Iwasaki T., Ishizaki K., Fukaki H., Ohnishi M., Yamazaki M., Masujima T., O’Connor S.E., Mimura T. (2019): The complexity of intercellular localisation of alkaloids revealed by single-cell metabolomics. New Phytologist, 224: 848–859.  https://doi.org/10.1111/nph.16138
 
Zandi M. (2021): Cytotoxicity of taxol in combination with vincristine and vinblastine against A375 cell line. Gene, Cell and Tissue. https://doi: 10.5812/gct.114359 (In Press) https://doi.org/10.5812/gct.114359
 
Zhang Y.Y. (2012): Ascorbic Acid in Plants: Biosynthesis, Regulation and Enhancement. Berlin, Springer Science and Business Media. ISBN: 978-1-4614-4127-4
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti