Optimisation of the amount of nitrogen enhances quality and yield of pepper

https://doi.org/10.17221/123/2021-PSECitation:

Han S., Zhu X.Q., Liu D.M., Wang L.B., Pei D.L. (2021): Optimisation of the amount of nitrogen enhances quality and yield of pepper. Plant Soil Environ., 67: 643–652.

 

download PDF

The goals of this study were to explore the characteristics of nitrogen (N) absorption and utilisation of chilli peppers (Capsicum annuum L.), improve the utilisation rate of nitrogen, and provide a theoretical basis for scientific fertilisation. In this experiment, pepper cv. Huoyanjiaowang was used as the material, and potted sand cultures and field randomised block experiments were conducted to study the effects of fertilisation of different forms of nitrogen on the photosynthetic characteristics, chlorophyll, nitrate nitrogen, alkaline nitrogen, capsaicin, dihydrocapsaicin and yield. In the pot experiment, the nitrogen application rates were 0, 10, 100, 320 and 600 mg/L, a level of nitrogen of 100 mg/L significantly inhibited the growth of pepper. With the increase in the application of nitrogen, the photosynthetic capacity gradually decreased, and 10 mg/L was the optimal nitrogen level. Under 0 and 10 mg N/L nitrogen levels in the field experiment, the content of chlorophyll of this group was significantly lower than those of other treatment groups, indicating that the plot lacked nitrogen. With the increase in the level of application of nitrogen, the contents of nitrate nitrogen and alkaline hydrolysis nitrogen in the soil increased. The yield of 153.18 kg/ha and 230 kg/ha nitrogen treatments was relatively high. Therefore, among the five nitrogen treatment levels, treatment with 153.18–230 kg N/ha was the most effective at stimulating the growth and yield of pepper.

 

References:
Aydinsakir K., Karaca C., Ozkan C.F., Dinc N., Buyuktas D., Isik M. (2019): Excess nitrogen exceeds the European standards in lettuce grown under greenhouse conditions. Agronomy Journal, 111: 764–769. https://doi.org/10.2134/agronj2018.07.0425
 
Bar-Tal A., Aloni B., Karni L., Rosenberg R. (2001): Nitrogen nutrition of greenhouse pepper. II. Effects of nitrogen concentration and NO3:NH4 ratio on growth, transpiration, and nutrient uptake. Hortscience, 36: 1252–1259. https://doi.org/10.21273/HORTSCI.36.7.1252
 
Bao S.D. (2000): Agrochemical Analysis of Soil. Beijing, China Agriculture Press.
 
Comfort S.D., Malzer G.L., Busch R.H. (1988): Nitrogen fertilization of spring wheat genotypes: influence on root growth and soil water depletion. Agronomy Journal, 80: 114–120. https://doi.org/10.2134/agronj1988.00021962008000010025x
 
Cetner M.D., Kalaji H.M., Goltsev V., Aleksandrov V., Kowalczyk K., Borucki W., Jajoo A. (2017): Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. Plant Physiology and Biochemistry, 119: 81–92. https://doi.org/10.1016/j.plaphy.2017.08.016
 
Chen X.C., Chen F.J., Gao Q., Yang X.L., Yuan L.X., Zhang F.S., Mi G.H. (2013): Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biology, 19: 923–936. https://doi.org/10.1111/gcb.12093
 
Cui B.J., Niu W.Q., Du Y.D., Zhang Q. (2020): Response of yield and nitrogen use efficiency to aerated irrigation and N application rate in greenhouse cucumber. Scientia Horticulturae, 265: 1–7. https://doi.org/10.1016/j.scienta.2020.109220
 
De Ávila Silva L., Condori-Apfata J.A., Marques Marcelino M., Azevedo Tavares A.C., Januário Raimundi S.C., Martino P.B., Araújo W.L., Zsögön A., Sulpice R., Nunes-Nesi A. (2019): Nitrogen differentially modulates photosynthesis, carbon allocation and yield related traits in two contrasting Capsicum chinense cultivars. Plant Science, 283: 224–237. https://doi.org/10.1016/j.plantsci.2019.02.014
 
Duan J.Z., Shao Y.H., He L., Li X., Hou G.G., Li S.N., Fang W., Zhu Y.J., Wang Y.H., Xie Y.X. (2019): Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Science of the Total Environment, 697: 134088. https://doi.org/10.1016/j.scitotenv.2019.134088
 
Glass A.D.M. (2003): Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, 22: 453–470. https://doi.org/10.1080/07352680390243512
 
Gou T.Y., Yang L., Hu W.X., Chen X.H., Zhu Y.X., Guo J., Gong H.J. (2020): Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. Plant Physiology and Biochemistry, 152: 53–61. https://doi.org/10.1016/j.plaphy.2020.04.031
 
He H.F., Yan C.H., Wu N., Liu J.L., Jia Y.H. (2021): Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum). Acta Prataculturae Sinica, 30: 107–115.
 
Ju X.T., Gu B.J. (2014): Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 20: 783–795. (In Chinese)
 
Khan S.A., Mulvaney R.L., Elsworth T.R., Boast C.W. (2007): The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 36: 1821–1832. https://doi.org/10.2134/jeq2007.0099
 
Krapp A. (2015): Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion Plant Biology, 25: 115–122. https://doi.org/10.1016/j.pbi.2015.05.010
 
Li J.M. (2010): Nutritional value in the Capsicum. Food and Nutrition in China, 2: 68–71.
 
Lichtenthaler H.K. (1987): Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350–382.
 
Matsumura A., Hirosawa K., Masumoto H., Daimon H. (2020): Effects of maize as a catch crop on subsequent garland chrysanthemum and green soybean production in soil with excess nitrogen. Scientia Horticulturae, 273: 109640. https://doi.org/10.1016/j.scienta.2020.109640
 
Mu X.H., Chen Q.W., Chen F.J., Yuan L.X., Mi G.H. (2016): Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Frontiers in Plant Science, 7: 699.
 
Mu X.H., Chen Y.L. (2021): The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 168: 76–82.
 
Oliver N., Martín M., Gargallo S., Hernández-Crespo C. (2017): Influence of operational parameters on nutrient removal from eutrophic water in a constructed wetland. Hydrobiologia, 792: 105–120. https://doi.org/10.1007/s10750-016-3048-4
 
Padilla F.M., Gallardo M., Manzano-Agugliaro F. (2018): Global trends in nitrate leaching research in the 1960–2017 period. Science of The Total Environment, 643: 400–413. https://doi.org/10.1016/j.scitotenv.2018.06.215
 
Pérez-Jiménez M., Carmen Piñero M., del Amor F.M. (2019): Heat shock, high CO2 and nitrogen fertilization effects in pepper plants submitted to elevated temperatures. Scientia Horticulturae, 244: 322–329. https://doi.org/10.1016/j.scienta.2018.09.072
 
Rodríguez A., Peña-Fleitas M.T., Gallardo M., de Souza R., Padilla F.M., Thompson R.B. (2020): Sweet pepper and nitrogen supply in greenhouse production: critical nitrogen curve, agronomic responses and risk of nitrogen loss. European Journal of Agronomy, 117: 126046. https://doi.org/10.1016/j.eja.2020.126046
 
Rubio-Wilhelmi M. del M., Sanchez-Rodriguez E., Rosales M.A., Blasco B., Rios J.J., Romero L., Blumwald E., Ruiz J.M. (2011): Cytokinin-dependent improvement in transgenic P(SARK): IPT tobacco under nitrogen deficiency. Journal of the Science of Food and Agriculture, 59: 10491–10495. https://doi.org/10.1021/jf202604k
 
Sperling O., Karunakaran R., Erel R., Yasuor H., Klipcan L., Yermiyahu U. (2019): Excessive nitrogen impairs hydraulics, limits photosynthesis, and alters the metabolic composition of almond trees. Plant Physiology and Biochemistry, 143: 265–274. https://doi.org/10.1016/j.plaphy.2019.08.030
 
Van Wallendael A., Bonnette J., Juenger T.E., Fritschi F.B., Fay P.A., Mitchell R.B., Lloyd-Reilley J., Rouquette F.M.Jr., Bergstrom G.C., Lowry D.B. (2020): Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum). New Phytologist, 227: 1696–1708. https://doi.org/10.1111/nph.16555
 
Wang J., Fu P.X., Lu W.P., Lu D.L. (2020): Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize. The Crop Journal, 8: 1081–1092. https://doi.org/10.1016/j.cj.2019.11.007
 
Wen B.B., Li C., Fu X.L., Li D.M., Li L., Chen X.D., Wu H.Y., Cui X.W., Zhang X.H., Shen H.Y., Zhang W.Q., Xiao W., Gao D.S. (2019): Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiology and Biochemistry, 142: 363–371. https://doi.org/10.1016/j.plaphy.2019.07.007
 
Wu Y.W., Li Q., Jin R., Chen W., Liu X.L., Kong F.L., Ke Y.P., Shi H.C., Yuan J.C. (2019): Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. Journal of Integrative Agriculture, 18: 1246–1256. https://doi.org/10.1016/S2095-3119(18)62030-1
 
Zhang G.L., Zhao J.N., Song X.L., Liu H.M., Zhang R., Ji Y.Y., Yang D.L. (2012): Effect of fertilization on soil organic carbon content and carbon pool management index. Journal of Plant Nutrition and Fertilizers, 18: 359–365.
 
Zhang M.M., Dong B.D., Qiao Y.Z., Shi C.H., Yang H., Wang Y.K., Liu M.Y. (2018): Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain. Journal of Integrative Agriculture, 17: 1194–1206. https://doi.org/10.1016/S2095-3119(17)61883-5
 
Zhu Y., Fan X.F., Hou X.C., Wu J.Y., Wang T. (2014): Effect of different levels of nitrogen deficiency on switchgrass seedling growth. The Crop Journal, 2: 223–234. https://doi.org/10.1016/j.cj.2014.04.005
 
Zhong C., Jian S.F., Huang J., Jin Q.Y., Cao X.C. (2019): Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L.). Plant Physiology and Biochemisthy, 135: 41–50. https://doi.org/10.1016/j.plaphy.2018.11.021
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti