Fe-Mn impregnated biochar alleviates di-(2-ethylhexyl) phthalate stress in vegetative growth of wheat

https://doi.org/10.17221/130/2022-PSECitation:

Liu Y., Song Z.G., Bai L.S., Chang X.P., Xu Y.L., Gao M.L. (2022): Fe-Mn impregnated biochar alleviates di-(2-ethyl-hexyl) phthalate stress in vegetative growth of wheat. Plant Soil Environ., 68: 441–450.

download PDF

In this study, we examined the effects of 0.5–2% iron and manganese oxide-modified biochar (FM) as remediation to control di-(2-ethylhexyl) phthalate (DEHP) in the soil and the response of wheat at different growth stages. The application of FM and original biochar (BC) significantly reduced DEHP concentrations in wheat roots and leaves and effectively immobilised DEHP in soils at different stages, and alleviated the oxidative damage of DEHP by significantly reducing O2– and H2O2 content and increasing the activities of antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase. Moreover, photosynthetic parameters (stomatal conductance, intercellular carbon dioxide concentration, photosynthetic rate, and transpiration rate) and fluorescence indicators (maximum photochemical efficiency, electron transport rate, and actual quantum yield) of the wheat growing in DEHP-spiked soils were also improved, which caused increases in the biomass of above-ground and underground at the seedling, booting, and ripening stages. Compared to BC, the FM amendment led to a greater improvement in crop biomass by reducing DEHP bioavailability. Therefore, FM has a good potential for the remediation of DEHP-polluted soils.

References:
Ahmed A., Kurian J.K., Raghavan V.G.S. (2016): Biochar influences on agricultural soils, crop production, and the environment – a review. Environmental Reviews, 24: 495–502. https://doi.org/10.1139/er-2016-0008
 
Chen H.B., Yang X., Wang H.L., Sarkar B., Shaheen S.M., Gielen G., Bolan N., Guo J., Che L., Sun H.L., Rinklebe J. (2020): Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: a trial for reclamation and improvement of degraded soils. Journal of Environmental Management, 261: 110246. https://doi.org/10.1016/j.jenvman.2020.110246
 
FAO-UNESCO (1988): Soil Map of the World. Rome, Food and Agriculture Organisation.
 
Gao M.L., Zhang Y., Gong X.L., Song Z.G., Guo Z.Y. (2017a): Removal mechanism of di-n-butyl phthalate and oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar. Environmental Science and Pollution Research, 25: 7796–7807.
 
Gao M.L., Dong Y.M., Zhang Z., Song W.H., Qi Y. (2017b): Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress. Chemosphere, 172: 418–428.
 
Gao M.L., Liu Y., Dong Y.M., Song Z.G. (2019): Physiological responses of wheat planted in fluvo-aquic soils to di (2-ethylhexyl) and di-n-butyl phthalates. Environmental Pollution, 244: 774–782. https://doi.org/10.1016/j.envpol.2018.10.095
 
Gao M.L., Xu Y.L., Chang X.P., Song Z.G. (2021): Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil. Chemosphere, 270: 129428. https://doi.org/10.1016/j.chemosphere.2020.129428
 
Goltsev V.N., Kalaji H.M., Paunov M., Bąba W., Horaczek T., Mojski J., Kociel H., Allakhverdiev S.I. (2016): Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63: 869–893. https://doi.org/10.1134/S1021443716050058
 
Guo Z.Y. (2020): Study on adsorption mechanism of PAEs on biochar matrix composites. [Master’s thesis] Tianjin, Tiangong University.
 
He L.Z., Fan S.L., Müller K., Hu G.T., Huang H.G., Zhang X.K., Lin X.M., Che L., Wang H.L. (2016): Biochar reduces the bioavailability of di-(2-ethylhexyl) phthalate in soil. Chemosphere, 142: 24–27. https://doi.org/10.1016/j.chemosphere.2015.05.064
 
He Y.H., Yao Y.X., Ji Y.H., Deng J., Zhou G.Y., Liu R.Q., Shao J.J., Zhou L.Y., Li N., Zhou X.H., Bai S.H. (2020): Biochar amendment boosts photosynthesis and biomass in C3 but not C4 plants: a global synthesis. Global Change Biology – Bioenergy, 12: 605–617. https://doi.org/10.1111/gcbb.12720
 
Hou W.H., Zhang Y.X., Wang H.J., Zhang Q.X., Hou M.L., Cong B.M., Du X.Y. (2021): Effects of nitrogen application level on leaf photosynthetic characteristics and chlorophyll fluorescence characteristics of Leymus chinensis. Acta Agrestia Sinica, 29: 532–536.
 
Irshad M.K., Noman A., Alhaithloul H.A.S., Adeel M., Rui Y.K., Shah T., Zhu S.H., Shang J.Y. (2020): Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Science of The Total Environment, 717: 137086. https://doi.org/10.1016/j.scitotenv.2020.137086
 
Jan S.U., Jamal A., Sabar M.A., Ortas I., Isik M., Aksahin V., Alghamdi H.A., Gul S., Saqib Z., Ali M.I. (2020): Impact of Zea mays L. waste derived biochar on cadmium immobilization and wheat plant growth. Pakistan Journal of Agricultural Sciences, 57: 1201–1210.
 
Jiang X., Rui H., Chen G.C., Xing B.S. (2020): Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: physicochemical properties, heavy metals sorption behavior and mechanism. Journal of Hazardous Materials, 399: 123067. https://doi.org/10.1016/j.jhazmat.2020.123067
 
Lin Y.C., Hu Y.G., Ren C.Z., Guo L.C., Wang C.L., Jiang Y., Wang X.J., Phendukani H., Zeng Z.H. (2013): Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. Journal of Integrative Agriculture, 12: 2164–2171. https://doi.org/10.1016/S2095-3119(13)60346-9
 
Liu P., Liu W.J., Jiang H., Chen J.J., Li W.W., Yu H.Q. (2012): Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121: 235–240. https://doi.org/10.1016/j.biortech.2012.06.085
 
Liu H.J., Zhang C.X., Wang J.M., Zhou C.J., Feng H., Mahajan M.D., Han X.R. (2017): Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosphere, 171: 240–247. https://doi.org/10.1016/j.chemosphere.2016.12.081
 
Lu R.K. (2000): Analytical Methods of Soil Agrochemistry. Beijing, China Agricultural Science and Technology Press.
 
Ma T.T., Christie P., Teng Y., Luo Y.M. (2013): Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis(2-ethylhexyl) phthalate. Environmental Science and Pollution Research, 20: 5289–5298. https://doi.org/10.1007/s11356-013-1520-5
 
Ma T.T., Zhou W., Chen L.K., Wu L.H., Christie P., Liu W.X. (2018): Toxicity of phthalate esters to lettuce (Lactuca sativa) and the soil microbial community under different soil conditions. PLoS One, 13: e0208111.
 
Ma T.T., Liu L.W., Zhou W., Chen L.K., Christie P. (2019): Effects of phthalate esters on Ipomoea aquatica Forsk. seedlings and the soil microbial community structure under different soil conditions. International Journal of Environmental Research and Public Health, 16: 3489. https://doi.org/10.3390/ijerph16183489
 
Marschner H. (1986): Mineral nutrition in higher plants. Journal of Ecology, 76: 1250.
 
Mehmood S., Ahmed W., Ikram M., Imtiaz M., Mahmood S., Tu S., Chen D. (2020): Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants (Basel), 9: 1173. https://doi.org/10.3390/plants9091173
 
Naeem M.A., Shabbir A., Amjad M., Abbas G., Imran M., Murtaza B., Tahir M., Ahmad A. (2020): Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa (Chenopodium quinoa Willd.). Ecotoxicology and Environmental Safety, 191: 110218. https://doi.org/10.1016/j.ecoenv.2020.110218
 
Qiu Z.Y., Wang L.H., Zhou Q. (2013): Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere, 90: 1274–1280. https://doi.org/10.1016/j.chemosphere.2012.09.085
 
Rajendran M., Shi L.Z., Wu C., Li W.C., An W.H., Liu Z.Y., Xue S.G. (2019): Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere, 222: 314–322. https://doi.org/10.1016/j.chemosphere.2019.01.149
 
Rizwan M., Ali S., Zia Ur Rehman M., Adrees M., Arshad M., Qayyum M.F., Ali L., Hussain A., Chatha S.A.S., Imran M. (2019): Alleviation of cadmium accumulation in maise (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 248: 358–367. https://doi.org/10.1016/j.envpol.2019.02.031
 
Speratti A.B., Johnson M.S., Sousa H.M., Dalmagro H.J., Couto E.G. (2018): Biochars from local agricultural waste residues contribute to soil quality and plant growth in a Cerrado region (Brazil) Arenosol. Global Change Biology – Bioenergy, 10: 272–286. https://doi.org/10.1111/gcbb.12489
 
Viger M., Hancock R.D., Miglietta F., Taylor G. (2015): More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Global Change Biology – Bioenergy, 7: 658–672. https://doi.org/10.1111/gcbb.12182
 
Xie Y.L., Liu H.K., Li H., Tang H., Peng H., Xu H. (2020): High-effectively degrade the di-(2-ethylhexyl) phthalate via biochemical system: resistant bacterial flora and persulfate oxidation activated by BC@Fe3O4. Environmental Pollution, 262: 114100. https://doi.org/10.1016/j.envpol.2020.114100
 
Zhang X.K., He L.Z., Sarmah A.K., Lin K., Liu Y.K., Li J.W., Wang H.L. (2014): Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. Journal of Soils and Sediments, 14: 1790–1799. https://doi.org/10.1007/s11368-014-0929-x
 
Zhang X.K., Sarmah A.K., Bolan N.S., He L.Z., Lin X.M., Che L., Tang C.X., Wang H.L. (2016): Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere, 142: 28–34. https://doi.org/10.1016/j.chemosphere.2015.05.037
 
Zhang H.Y., Lin Z., Liu B., Wang G., Weng L.Y., Zhou J.L., Hu H.Q., He H., Huang Y.X., Chen J.J., Ruth N., Li C.Y., Ren L. (2020): Bioremediation of di-(2-ethylhexyl) phthalate contaminated red soil by Gordonia terrae RL-JC02: characterization, metabolic pathway and kinetics. Science of The Total Environment, 733: 139138. https://doi.org/10.1016/j.scitotenv.2020.139138
 
Zhu Q., Kong L.J., Shan Y.Z., Yao X.D., Zhang H.J., Xie F.T., Ao X. (2019): Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. Journal of Integrative Agriculture, 18: 2242–2254. https://doi.org/10.1016/S2095-3119(19)62563-3
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti