Bacterial endophytes from horseradish (Armoracia rusticana G. Gaertn., B. Mey. & Scherb.) with antimicrobial efficacy against pathogens

https://doi.org/10.17221/137/2020-PSECitation:Egamberdieva D., Shurigin V., Alaylar B., Wirth S., Bellingrath-Kimura S.D. (2020): Bacterial endophytes from horseradish (Armoracia rusticana G. Gaertn., B. Mey. & Scherb.) with antimicrobial efficacy against pathogens. Plant Soil Environ., 66: 309-316.
download PDF

The current study aimed to determine the diversity of culturable endophytic bacteria associated with horseradish (Armoracia rusticana G.Gaertn., B.Mey.&Scherb.) grown in Chatkal Biosphere Reserve of Uzbekistan and their antimicrobial potentials. The bacteria were isolated from plant leaves and root tissues using culture-dependent techniques. The 16S rRNA sequences similarities of endophytic bacteria isolated from A. rusticana showed that isolates belong to species Paenibacillus, Raoultella, Stenotrophomonas, Pseudomonas, Serratia, Microbacterium, Enterobacter, Achromobacter, Brevibacterium, Pantoea, and Erwinia. The isolated endophytic bacteria Stenotrophomonas maltophilia KRT1, Serratia ficaria KRT5, and Pantoea agglomerans KLT4 possess antimicrobial activities against human pathogenic bacteria Staphylococcus aureus, Escherichia coli, and Candida albicans. The endophytic bacteria Paenibacillus typhae KRN1, Stenotrophomonas maltophilia KRT1, Pseudomonas kilonensis KRT11, Pseudomonas umsongensis KRT21, Brevibacterium frigoritolerans KLT2 and Pantoea agglomerans KLT4 inhibited phytopathogenic fungi Rhizoctonia solani, Fusarium culmorum, and F. solani. These findings indicate that plant endophytic bacteria with antimicrobial activity could be a source for producing agriculturally and pharmaceutically important antimicrobial compounds.

References:
Agneta R., Möllers C., Rivelli A.R. (2013): Horseradish (Armoracia rusticana), a neglected medical and condiment species with https://doi.org/10.1007/s10722-013-0010-4
 
a relevant glucosinolate profile: a review. Genetic Resources and Crop Evolution, 60: 1923–1943.
 
Akinsanya M.A., Goh J.K., Lim S.P., Ting A.S.Y. (2015): Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiology Letters, 362: 184. https://doi.org/10.1093/femsle/fnv184
 
Chaparro J.M., Badri D.V., Vivanco J.M. (2014): Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal, 8: 790–803. https://doi.org/10.1038/ismej.2013.196
 
Choi K.-D., Kim H.-Y., Shin I.-S. (2017): Antifungal activity of isothiocyanates extracted from horseradish (Armoracia rusticana) root against pathogenic dermal fungi. Food Science and Biotechnology, 26: 847–852. https://doi.org/10.1007/s10068-017-0104-4
 
Chowdhury M.D.E.K., Jeon J.H., Rim S.K., Park Y.-H., Lee S.K., Bae H.H. (2017): Composition, diversity and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea. Scientific Reports, 7: 10098. https://doi.org/10.1038/s41598-017-10280-7
 
Dashti A.A., Jadaon M.M., Abdulsamad A.M., Dashti H.M. (2009): Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. The Journal of the Kuwait Medical Association, 41: 117–122.
 
Egamberdieva D., Wirth S., Bellingrath-Kimura S.D., Mishra J., Arora N.K. (2019): Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10: 2791. https://doi.org/10.3389/fmicb.2019.02791
 
Egamberdieva D., Wirth S., Behrendt U., Parvaiz A., Berg G. (2017): Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology, 8: 199. https://doi.org/10.3389/fmicb.2017.00199
 
Elissawy A.M., Ebada S.S., Ashour M.L., El-Neketi M., Ebrahim W., Singab A.B. (2019): New secondary metabolites from the mangrove-derived fungus Aspergillus sp. AV-2. Phytochemistry Letters, 29: 1–5. https://doi.org/10.1016/j.phytol.2018.10.014
 
Hankin L., Anagnostakis S.L. (1977): Solid media containing carboxymethylcellulose to detect CX cellulase activity of micro-organisms. Journal of General Microbiology, 98: 109–115. https://doi.org/10.1099/00221287-98-1-109
 
Howe T.G., Ward J.M. (1976): The utilization of tween 80 as carbon source by Pseudomonas. Journal of General Microbiology, 92: 234–235. https://doi.org/10.1099/00221287-92-1-234
 
Jang Y.-G., Park H.-W., Shin I.-S., Lee J.-H., Se H.-W. (2020): The antimicrobial effect of horseradish (Armoracia rusticana) root extracts against anaerobes isolated from oral cavity. Journal of the Korean Academy of Pediatric Dentistry, 37: 168–178.
 
Jinneman K.C., Wetherington J.H., Adams A.M., Johnson J.M., Tenge B.J., Dang N.L., Hill W.E. (1996): Differentiation of Cyclospora sp. and Eimeria spp. by using the polymerase chain reaction amplification products and restriction fragment length polymorphisms. Virginia, Food and Drug Admin Lab Information Bulletin LIB No. 4044.
 
Köberl M., Ramadan E.M., Adam M., Cardinale M., Hallmann J., Heuer H., Smalla K., Berg G. (2013): Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters, 342: 168–178. https://doi.org/10.1111/1574-6968.12089
 
Lata R.K., Divjot K., Nath Y.A. (2019): Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Research Journal of Biotechnology, 14: 142–162.
 
Malleswari D., Bagyanarayan G. (2013): In vitro screening of rhizobacteria isolated from the rhizosphere of medicinal and aromatic plants for multiple plant growth promoting activities. Journal of Microbiology and Biotechnology, 3: 84–91.
 
Musa Z., Ma J.B., Egamberdieva D., Mohamad O.A.A., Abaydulla G., Liu Y.H., Li W.J., Li L. (2020): Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with medicinal plant Thymus roseus. Frontiers in Microbiology. doi: 10.3389/fmicb.2020.00191 https://doi.org/10.3389/fmicb.2020.00191
 
Nguyen N.M., Gonda S., Vasas G. (2013): A review on the phytochemical composition and potential medicinal uses of horseradish (Armoracia rusticana) root. Food Reviews International, 29: 261–275. https://doi.org/10.1080/87559129.2013.790047
 
Nongkhlaw F.M.W., Joshi S.R. (2014): Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. International Journal of Tropical Biology and Conservation, 62: 1295–1308.
 
Nongkhlaw F.M.W., Joshi S.R. (2015): Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. Journal of Infection in Developing Countries, 9: 954–961. https://doi.org/10.3855/jidc.4967
 
Park H.-W., Choi K.-D., Shin I.-S. (2013): Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms. Biocontrol Science, 18: 163–168. https://doi.org/10.4265/bio.18.163
 
Pongtharangkul T., Demirci A. (2004): Evaluation of agar diffusion bioassay for nisin quantification. Applied Microbiology and Biotechnology, 65: 268–272. https://doi.org/10.1007/s00253-004-1579-5
 
Saitou N., Nei M. (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406–425.
 
Szücs Z., Plaszkó T., Cziáky Z., Kiss-Szikszai A., Emri T., Bertóti R., Sinka L.T., Vasas G., Gonda S. (2018): Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate – myrosinase – isothiocyanate system. BMC Plant Biology, 18: 85. https://doi.org/10.1186/s12870-018-1295-4
 
Szymańska S., Płociniczak T., Piotrowska-Seget Z., Złoch M., Ruppel S., Hrynkiewicz K. (2016): Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiological Research, 182: 68–79. https://doi.org/10.1016/j.micres.2015.09.007
 
Tamura K., Nei M., Kumar S. (2004): Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy of Sciences, 101: 11030–11035. https://doi.org/10.1073/pnas.0404206101
 
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013): MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725–2729. https://doi.org/10.1093/molbev/mst197
 
Walsh G.A., Murphy R.A., Killeen G.F., Headon D.R., Power R.F. (1995): Technical note: detection and quantification of supplemental fungal beta-glucanase activity in animal feed. Journal of Animal Science, 73: 1074–1076. https://doi.org/10.2527/1995.7341074x
 
download PDF

© 2020 Czech Academy of Agricultural Sciences