Response of growth and drought tolerance of Acacia seyal Del. seedlings to arbuscular mycorrhizal fungi A., Abdelmalik A., Alsharani T., Al-Qarawi B.A., Aref I. (2020): Response of growth and drought tolerance of Acacia seyal Del. seedlings to arbuscular mycorrhizal fungi. Plant Soil Environ., 66: 264-271.
download PDF

Considering the improvement of acacia species growth in arid and semi-arid environment, a pot experiment was conducted to evaluate the role of arbuscular mycorrhizal fungi (AMF); Funneliformis mosseae (syn. Glomus mosseae), Rhizophagus intraradices (syn. Glomus intraradices) and Claroideoglomus etunicatum (syn. Glomus etunicatum) on growth and drought tolerance of Acacia seyal Del. seedlings under drought cycles (7, 14, 21 and 28 days). AMF-inoculated seedlings showed a clear colonisation percentage (36–68%). AMF treatment significantly improved seedlings shoot and root growth under all drought cycles compared to non-AMF control seedlings. Moreover, AMF treatment enhanced seedlings drought resistance by increasing root surface area (root length increased by 483.76% and root tips number increased by 1 463.94% under 28 days of drought cycle), there was a strong linear relation between proline accumulation, AMF and drought stress (proline content decreased in treated seedlings by 31.3% and 14.3% and increased by 97.5% and 80.4% in untreated seedlings under drought cycles of 21 and 28 days, respectively). In conclusion, the AMF inoculation improved growth and enhanced drought tolerance of A. seyal seedlings and can be used as a natural biostimulator for acacias seedlings establishment in arid areas.

Allen M.F. (2007): Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal, 6: 291–297.
Andersen G.L. (2012): Vegetation and management regime continuity in the cultural landscape of the eastern desert. In: Barnard H., Duistermaat K. (eds.): The History of the Peoples of the Eastern Desert. Los Angeles, The Cotsen Institute of Archaeology Press, 126–139. ISBN-10: 193174596X
Arrieta S., Suárez F. (2006): Marginal holly (Ilex aquifolium L.) populations in Mediterranean central Spain are constrained by a low-seedling recruitment. Flora, 201: 152–160.
Balota E.L., Machineski O., Stenzel N.M.C. (2011): Mycorrhizal efficiency in Acerola seedlings with different levels of phosphorus. Brazilian Archives of Biology and Technology, 54: 457–464.
Bárzana G., Aroca R., Paz J.A., Chaumont F., Martinez-Ballesta M.C., Carvajal M., Ruiz-Lozano J.M. (2012): Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany, 109: 1009–1017.
Begum N., Qin C., Ahanger M.A., Raza S., Khan M.I., Ashraf M., Ahmed N., Zhang L.X. (2019): Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10: 1068.
Bennett A.C., McDowell N.G., Allen C.D., Anderson-Teixeira K.J. (2015): Larger trees suffer most during drought in forests worldwide. Nature Plants, 1: 15139.
Birhane E., Kuyper T.W., Sterck F.J., Gebrehiwot K., Bongers F. (2015): Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies. Plant Ecology and Diversity, 8: 387–399.
Chen W.L., Koide R.T., Adams T.S., DeForest J.L., Cheng L., Eissenstat D.M. (2016): Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences, 113: 8741–8746.
Cheng L., Booker F.L., Tu C., Burkey K.O., Zhou L.S., Shew H.D., Rufty T.W., Hu S.J. (2012): Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337: 1084–1087.
Daniels B.A., Skipper H.D. (1982): Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck N.C. (ed.): Methods and Principles of Mycorrhizal Research. St. Paul, American Phytopathological Society, 29–35. ISBN 0890540462
El-Atta H.A., Aref I.M., Ahmed A.I. (2016): Seed size effects on the response of seedlings of Acacia asak (Forssk.) Willd. to water stress. Pakistan Journal of Botany, 48: 439–446.
Futai K., Taniguchi T., Takaota R. (2008): Ectomychorrhizae and their importance in forest ecosystems. In: Siddiqui Z., Akhtar M.S., Futai K. (eds): Mycorrhizae: Sustainable Agriculture and Forestry. Dordrecht, Springer-Verlag, 241–286. ISBN: 978-1-4020-8769-1
Hall J.B. (1994): Acacia seyal – Multipurpose Tree of the Sahara Desert. Little Rock, Winrock International.
Kondoh S., Yahata H., Nakashizuka T., Kondoh M. (2006): Interspecific variation in vessel size, growth and drought tolerance of broad-leaved trees in semi-arid regions of Kenya. Tree Physiology, 26: 899–904.
Kong J., Pei Z.P., Du M., Sun G., Zhang X. (2014): Effects of arbuscular mycorrhizal fungi on the drought resistance of the mining area repair plant Sainfoin. International Journal of Mining Science and Technology, 24: 485–489.
Lehto T., Zwiazek J.J. (2011): Ectomycorrhizas and water relations of trees: a review. Mycorrhiza, 21: 71–90.
Li J.Q., Meng B., Chai H., Yang X.C., Song W.Z., Li S.X., Lu A., Zhang T., Sun W. (2019): Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10: 499.
Mariod A.A., Mohammed N.M.F., Nabag F.O., Hassan A.A. (2014): Ethnobotanical study of three trees: indigenous knowledge on trees used as cosmetic in Khartoum state, Sudan. Asian Journal of Pharmaceutical Science and Technology, 4: 178–182.
Miller W.P., Miller D.M. (1987): A micro-pipette method for soil mechanical analysis. Communications in Soil Science and Plant Analysis, 18: 1–15.
Mohammed M.H. (2011): Management of Natural Stands of Acacia seyal Del. Varietyseyal (Brenan) for Production of Gum Talha, South Kordofan, Sudan. [Ph.D. thesis] Dresden, Technische University.
Mohan J.E., Cowden C.C., Baas P., Dawadi A., Frankson P.T., Helmick K., Hughes E., Khan S., Lang A., Machmuller M., Taylor M., Witt C.A. (2014): Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 10: 3–19.
Nelson D.W., Sommers L.E. (1982): Total carbon, organic carbon, and organic matter. In: Page A.L., Miller R.H., Keeney D.R. (eds.): Chemical and Microbiological Properties. Methods of Soil Analysis, Part 2. 2nd Edition. Madison, American Society of Agronomy and Soil Science Society of America, 539–580.
Pavithra D., Yapa N. (2018): Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Ground Water for Sustainable Development, 7: 490–494.
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158–161.
Plett J.M., Kemppainen M., Kale S.D., Kohler A., Legué V., Brun A., Tyler B.M., Pardo A.G., Martin F. (2011): A secreted effector protein of Laccaria bicolor is required for symbiosis development. Current Biology, 21: 1197–1203.
Rapparini F., Penuelas J. (2014): Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M. (ed.): Use of Microbes for the Alleviation of Soil Stresses. New York, Springer Science and Business Media, 21–42. ISBN 978-1-4614-9466-9
Regent Instruments Inc. (1996): MacRHIZO and WinRHIZO Image Analysis System for Root Measurement. Quebec, Canadian Company.
Rowland L., da Costa A.C.L., Galbraith D.R., Oliveira R.S., Binks O.J., Oliveira A.A.R., Pullen A.M., Doughty C.E., Metcalfe D.B., Vasconcelos S.S., Ferreira L.V., Malhi Y., Grace J., Mencuccini M. (2015): Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528: 119–122.
Ruiz-Lozano J.M. (2003): Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13: 309–317.
Sadasivam S., Manickam A. (1996): Biochemical Methods. 2nd Edition. New Delhi, New Age International Publishers Ltd., 107–109. ISBN 8122409768
SAS Institute Inc. (2010): SAS 9.2 Companion for Windows. 2nd Edition. Cary, USA. ISBN 1607644827
Shao Y.D., Zhang D.J., Hu X.C., Wu Q.S., Jiang C.J., Xia T.J., Gao X.B., Kuča K. (2018): Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment, 64: 283–289.
Solís-Domínguez F.A., Valentín-Vargas A., Chorover J., Maier R.M. (2011): Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of Total Environment, 409: 1009–1016.
Utobo E.B., Ogbodo E.N., Nwogbaga A.C. (2011): Techniques for extraction and quantification of arbuscular mycorrhizal fungi. Libyan Agriculture Research Center Journal International, 2: 68–78.
Wang B., Qiu Y.L. (2006): Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16: 299–363.
Zarik L., Meddich A., Hijri M., Hafidi M., Ouhammou A., Ouahmane L., Duponnois R., Boumezzough A. (2016): Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. Comptes Rendus Biologies, 339: 185–196.
download PDF

© 2020 Czech Academy of Agricultural Sciences