Antioxidant activity and content of selected antioxidant compounds in grain of different oat cultivars

https://doi.org/10.17221/212/2020-PSECitation:Capouchová I., Burešová B., Paznocht L., Eliášová M., Pazderů K., Konvalina P., Satranský M., Dvořáček V. (2020): Antioxidant activity and content of selected antioxidant compounds in grain of different oat cultivars. Plant Soil Environ., 66: 327-333.
download PDF

The total antioxidant activity (TAA), total contents of polyphenols (TPC), phenolic acids (TPA) and tocols (TTC) were determined in the grain of 5 oat cultivars of Czech origin grown under organic and conventional cropping systems in two-year experiments (2018 and 2019). The TPC ranged from 772.9 mg/kg DM (dry matter) (hulled oat cv. Seldon) to 890.6 mg/kg (naked oat cv. Patrik); the TPA from 261.6 mg/kg (cv. Seldon) to 479.0 mg/kg (cv. Patrik); the TTC from 110.9 mg/kg (hulled oat cv. Korok) to 126.5 mg/kg (cv. Seldon). The TAA ranged from 427.1 mg/kg (cv. Korok) to 474.9 mg/kg (cv. Seldon). Besides the effect of the cultivar, the TAA and antioxidant contents were significantly affected also by year (weather conditions); higher values were observed in the drier and warmer the year 2019. The effect of the cropping system was statistically insignificant.

References:
Barański M., Średnicka-Tober D., Volakakis N., Seal C., Sanderson R., Stewart G.B., Benbrook C., Biavati B., Marellou E., Giotis C., Gromadzka-Ostrowska J., Rembialkowska E., Skwarlo-Sońta K., Tahvonen R., Janovská D., Niggli U., Nicot P., Leifert C. (2014): Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: https://doi.org/10.1017/S0007114514001366
 
a systematic literature review and meta-analyses. The British Journal of Nutrition, 112: 794–811.
 
Ben Halima N., Ben Saad R., Khemakhem B., Fendri I., Abdelkafi S. (2015): Oat (Avena sativa L.): oil and nutriment compounds valorization for potential use in industrial applications. Journal of Oleo Science, 64: 915–932. https://doi.org/10.5650/jos.ess15074
 
Brindzová L., Čertík M., Rapta P., Zalibera M., Mikulajová A., Takácsová M. (2008): Antioxidant activity, β-glucans and lipid contents of oat varieties. Czech Journal of Food Science, 26: 163–173. https://doi.org/10.17221/2564-CJFS
 
Chen C., Wang L., Wang R., Luo X.H., Li Y.F., Li J., Li Y.N., Chen Z.X. (2018): Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chemistry, 239: 260–267. https://doi.org/10.1016/j.foodchem.2017.06.104
 
Chen H., Qiu S., Gan J., Li Z., Nirasawa S., Yin L. (2016): New insights into the antioxidant activity and components in crude oat oil and soybean oil. Journal of Food Science and Technology, 53: 808–815. https://doi.org/10.1007/s13197-015-1991-0
 
Eliášová M., Paznocht L. (2017): Total phenolic content and antioxidant activity of tritordeum, wheat and barley. Agronomy Research, 15: 1287–1294.
 
Fernández-Acosta K., Salmeron I., Chavez-Flores D., Perez-Reyes I., Ramos V., Ngadi M., Kwofie E.M., Perez-Vega S. (2019): Evaluation of different variables on the supercritical CO2 extraction of oat (Avena sativa L.) oil; main fatty acids, polyphenols and antioxidant content. Journal of Cereal Science, 88: 118–124. https://doi.org/10.1016/j.jcs.2019.05.017
 
Ficco D.B.M., Mastrangelo A.M., Trono D., Borrelli G.M., De Vita P., Fares C., Beleggia R., Platani C., Papa R. (2014): The colours of durum wheat: a review. Crop and Pasture Science, 65: 1–15. https://doi.org/10.1071/CP13293
 
Galli F., Azzi A. (2010): Present trends in vitamin E research. Biofactors, 36: 33–42. https://doi.org/10.1002/biof.75
 
Gutierrez-González J.J., Wise M.L., Garvin D.F. (2013): A developmental profile of tocol accumulation in oat seeds. Journal of Cereal Science, 57: 79–83. https://doi.org/10.1016/j.jcs.2012.10.001
 
Kouřimská L., Sabolová M., Horčička P., Rys S., Božik M. (2018): Lipid content, fatty acid profile and nutritional value of new oat varieties. Journal of Cereal Science, 84: 44–48. https://doi.org/10.1016/j.jcs.2018.09.012
 
Kováčová M., Malinová E. (2007): Ferulic and coumaric acids, total phenolic compounds and their correlation in selected oat genotypes. Czech Journal of Food Sciences, 25: 325–332. https://doi.org/10.17221/746-CJFS
 
Lachman L., Hejtmánková A., Orsák M., Popov M., Martinek P. (2018): Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley. Food Chemistry, 240: 725–735.  https://doi.org/10.1016/j.foodchem.2017.07.123
 
Martínez-Villaluenga C., Peñas E. (2017): Health benefits of oat: current evidence and molecular mechanisms. Current Opinion in Food Science, 14: 26–31. https://doi.org/10.1016/j.cofs.2017.01.004
 
Multari S., Pihlava J.-M., Ollennu-Chuasam P., Hietaniemi V., Yang B.R., Suomela J.-P. (2018): Identification and quantification of avenanthramides and free and bound phenolic acids in eight cultivars of husked oat (Avena sativa L.) from Finland. Journal of Agricultural and Food Chemistry, 66: 2900–2908. https://doi.org/10.1021/acs.jafc.7b05726
 
Nicholson R.L., Hammerschmidt R. (1992): Phenolic compounds and their role in disease resistance. Annual Reviews of Phytopathology, 30: 369–389. https://doi.org/10.1146/annurev.py.30.090192.002101
 
Paznocht L., Kotíková Z., Burešová B., Lachman J., Martinek P. (2020): Phenolic acids in kernels of different coloured-grain wheat genotypes. Plant, Soil and Environment, 66: 57–64. https://doi.org/10.17221/380/2019-PSE
 
Peterson D.M., Quereshi A.A. (1993): Genotype and environment effects on tocols of barley and oats. Cereal Chemistry, 70: 157–162.
 
Redaelli R., del Frate V., Bellato S., Terracciano G., Ciccoritti R., Germeier C.U., De Stefanis E., Sgrulletta D. (2013): Genetic and environmental variability of total and soluble β-glucan in European oat genotypes. Journal of Cereal Science, 57: 193–199. https://doi.org/10.1016/j.jcs.2012.09.003
 
Redaelli R., Dimberg L., Germeier C.U., Berardo N., Locatelli S., Guerrini L. (2016): Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm. Euphytica, 207: 273–292. https://doi.org/10.1007/s10681-015-1535-8
 
Rühmann S., Leser C., Bannert M., Treutter D. (2002): Relationship between growth, secondary metabolism, and resistance of apple. Plant Biology, 4: 137–143. https://doi.org/10.1055/s-2002-25727
 
Stewart D., McDougall G. (2014): Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. The British Journal of Nutrition, 112: S50–S57. https://doi.org/10.1017/S0007114514002736
 
Strychar R. (2011): Chaper 1: World oat production, trade and usage. In: Webster F.H., Wood P.J. (eds.): Oats: Chemistry and Technology. St. Paul, American Association of Cereal Chemists, 1–10.
 
Van den Broeck H.C., Londono D.M., Timmer R., Smulders M.J.M., Gilissen L.J.W.J., Van der Meer I.M. (2016): Profiling of nutritional and health-related compounds in oat varieties. Foods, 5: 2. https://doi.org/10.3390/foods5010002
 
Zrcková M., Capouchová I., Eliášová M., Paznocht L., Pazderů K., Dvořák P., Konvalina P., Orsák M., Štěrba Z. (2018): The effect of genotype, weather conditions and cropping system on antioxidant activity and content of selected antioxidant compounds in wheat with coloured grain. Plant, Soil and Environment, 64: 530–538. https://doi.org/10.17221/430/2018-PSE
 
Zuchowski J., Jonczyk K., Pecio L., Oleszek W. (2011): Phenolic acid concentrations in organically and conventionally cultivated spring and winter wheat. Journal of the Science of Food and Agriculture, 91: 1089–1095. https://doi.org/10.1002/jsfa.4288
 
download PDF

© 2020 Czech Academy of Agricultural Sciences