Visible and near infrared reflectance spectroscopy for field-scale assessment of Stagnosols properties

https://doi.org/10.17221/220/2018-PSECitation:Šestak I., Mesić M., Zgorelec Ž., Perčin A., Stupnišek I. (2018): Visible and near infrared reflectance spectroscopy for field-scale assessment of Stagnosols properties. Plant Soil Environ., 64: 276-282.
download PDF

Spectral data contain information on soil organic and mineral composition, which can be useful for soil quality monitoring. The objective of research was to evaluate hyperspectral visible and near infrared reflectance (VNIR) spectroscopy for field-scale prediction of soil properties and assessment of factors affecting soil spectra. Two hundred soil samples taken from the experiment field (soil depth: 30 cm; sampling grid: 15 × 15 m) were scanned using portable spectroradiometer (350–1050 nm) to identify spectral differences of soil treated with ten different rates of mineral nitrogen (N) fertilizer (0–300 kg N/ha). Principal component analysis revealed distinction between higher- and lower-N level treatments conditioned by differences in soil pH, texture and soil organic matter (SOM) composition. Partial least square regression resulted in very strong correlation and low root mean square error (RMSE) between predicted and measured values for the calibration (C) and validation (V) dataset, respectively (SOM, %: RC2 = 0.75 and RV2 = 0.74; RMSEC = 0.334 and RMSEV = 0.346; soil pH: RC2 = 0.78 and RV2 = 0.62; RMSEC = 0.448 and RMSEV = 0.591). Results indicated that hyperspectral VNIR spectroscopy is an efficient method for measurement of soil functional attributes within precision farming framework.

 

References:
Chang Cheng-Wen, Laird David A., Mausbach Maurice J., Hurburgh Charles R. (2001): Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, 65, 480-  https://doi.org/10.2136/sssaj2001.652480x
 
Demattê José A.M, Campos Rogério C, Alves Marcelo C, Fiorio Peterson R, Nanni Marcos R (2004): Visible–NIR reflectance: a new approach on soil evaluation. Geoderma, 121, 95-112  https://doi.org/10.1016/j.geoderma.2003.09.012
 
ESRI® ArcMapTM 9.2. ArcView Copyright (1999–2006). Redlands, ESRI, Inc.
 
Feyziyev Fikrat, Babayev Maharram, Priori Simone, L’Abate Giovanni (2016): Using Visible-Near Infrared Spectroscopy to Predict Soil Properties of Mugan Plain, Azerbaijan. Open Journal of Soil Science, 06, 52-58  https://doi.org/10.4236/ojss.2016.63006
 
Islam Kamrunnahar, Singh Balwant, McBratney Alex (2003): Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research, 41, 1101-  https://doi.org/10.1071/SR02137
 
IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO. Available at: http://www.fao.org/3/a-i3794e.pdf
 
López-Granados F., Jurado-Expósito M., Peña-Barragán J.M., García-Torres L. (2005): Using geostatistical and remote sensing approaches for mapping soil properties. European Journal of Agronomy, 23, 279-289  https://doi.org/10.1016/j.eja.2004.12.003
 
McCarty Gregory W., Reeves James B. (2006): COMPARISON OF NEAR INFRARED AND MID INFRARED DIFFUSE REFLECTANCE SPECTROSCOPY FOR FIELD-SCALE MEASUREMENT OF SOIL FERTILITY PARAMETERS. Soil Science, 171, 94-102  https://doi.org/10.1097/01.ss.0000187377.84391.54
 
McCoy R.M. (2005): Field Methods in Remote Sensing. New York, The Guilford Press.
 
Mesic M., Zgorelec Z., Sestak I., Jurisic A. (2011): Nitrogen Fertilization Acceptable for Environment, Scientific Report, Zagreb (Croatia). Zagreb, University of Zagreb.
 
Nanni Marcos Rafael, Demattê José Alexandre M. (2006): Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Science Society of America Journal, 70, 393-  https://doi.org/10.2136/sssaj2003.0285
 
Qiao Xing-Xing, Wang Chao, Feng Mei-Chen, Yang Wu-De, Ding Guang-Wei, Sun Hui, Liang Zhuo-Ya, Shi Chao-Chao (2017): Hyperspectral estimation of soil organic matter based on different spectral preprocessing techniques. Spectroscopy Letters, 50, 156-163  https://doi.org/10.1080/00387010.2017.1297958
 
Sørensen L. K., Dalsgaard S. (2005): Determination of Clay and Other Soil Properties by Near Infrared Spectroscopy. Soil Science Society of America Journal, 69, 159-  https://doi.org/10.2136/sssaj2005.0159
 
Stenberg B., Viscarra Rossel R.A., Mouazen A.M., Wetterlind J. (2010): Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 107: 163–215.
 
Stoner E. R., Baumgardner M. F. (1981): Characteristic Variations in Reflectance of Surface Soils1. Soil Science Society of America Journal, 45, 1161-  https://doi.org/10.2136/sssaj1981.03615995004500060031x
 
Luce M.St., Ziadi N., Zebarth B.J., Grant C.A., Tremblay G.F., Gregorich E.G. (2014): Rapid determination of soil organic matter quality indicators using visible near infrared reflectance spectroscopy. Geoderma, 232–234: 449–458.
 
Unscrambler 9.7. Spectroscopy Software Suite (2007): CAMO Software AS., Oslo.
 
ViewSpec Pro 4.07 Software (2009): Analytical Spectral Devices (ASD), Inc., Boulder, Colorado.
 
Viscarra Rossel R.A., McBratney A.B. (1998): Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content. Geoderma, 85, 19-39  https://doi.org/10.1016/S0016-7061(98)00023-8
 
Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O. (2006): Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59-75  https://doi.org/10.1016/j.geoderma.2005.03.007
 
Viscarra Rossel R. A., Chappell A., De Caritat P., McKenzie N. J. (2011): On the soil information content of visible-near infrared reflectance spectra. European Journal of Soil Science, 62, 442-453  https://doi.org/10.1111/j.1365-2389.2011.01372.x
 
Zhang M.Q., Wang S.Q., Li S., Yi J., Fu P. (2011): Prediction and map-making of soil organic matter of soil profile based on imaging spectroscopy: A case in Hubei China. Proceedings of the 19th International Conference on Geoinformatics, Shanghai: IEEE Computer Society, 2347–2352.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti