Effect of different soil and weather conditions on efficacy, selectivity and dissipation of herbicides in sunflower

https://doi.org/10.17221/223/2020-PSECitation:

Jursík M., Kočárek M., Kolářová M., Tichý L. (2020): Effect of different soil and weather conditions on efficacy, selectivity and dissipation of herbicides in sunflower. Plant Soil Environ., 66: 468–476.

 

download PDF

Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015–2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0–5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.

 

References:
Andr J., Kočárek M., Jursík M., Fendrychová V., Tichý L. (2017): Effect of adjuvants on the dissipation, efficacy and selectivity of three different pre-emergent sunflower herbicides. Plant, Soil and Environment, 63: 409–415. https://doi.org/10.17221/365/2017-PSE
 
Bedmar F., Daniel P.E., Costa J.L., Daniel G. (2011): Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina. Environmental Toxicology and Chemistry, 30: 1990–1996. https://doi.org/10.1002/etc.602
 
Das T.K., Yaduraju N.T. (2012): The effects of combining modified sowing methods with herbicide mixtures on weed interference in wheat crops. International Journal of Pest Management, 58: 310–319. https://doi.org/10.1080/09670874.2012.680933
 
De Prado R., Romera E., Jorrin J. (1993): Effects of chloroacetamides and phytosynthesis-inhibiting herbicides on growth and photosynthesis in sunflower (Helianthus annuus L.) and Amaranthus hybridus L. Weed Research, 33: 369–374. https://doi.org/10.1111/j.1365-3180.1993.tb01952.x
 
Dhareesank A.R.M., Kobayashi K., Usui K. (2006): Residual phytotoxic activity of pethoxamid in soil and its concentration in soil water under different soil moisture conditions. Weed Biology and Management, 6: 50–54. https://doi.org/10.1111/j.1445-6664.2006.00195.x
 
EPPO (2007): PP 1/63 (3) Weeds in sunflower. OEPP/EPPO Bulletin, 37: 52–55. https://doi.org/10.1111/j.1365-2338.2007.01076.x
 
EPPO (2014): PP 1/135 (4) Phytotoxicity assessment. OEPP/EPPO Bulletin, 44: 265–273. https://doi.org/10.1111/epp.12134
 
Erasmo E.A.L., Costa N.V., Peruzzo A.S., Barberato J. (2010): Effect of herbicides applied on sunflower crop in wetland soil. Planta Daninha, 28: 843–852. https://doi.org/10.1590/S0100-83582010000400018
 
Gannon T.W., Hixson A.C., Keller K.E., Weber J.B., Knezevic S.Z., Yelverton F.H. (2014): Soil properties influence saflufenacil phytotoxicity. Weed Research, 62: 657–663. https://doi.org/10.1614/WS-D-13-00171.1
 
Godwin J., Norsworthy J.K., Scott R.C. (2018a): Weed control and selectivity of pethoxamid alone and in mixture as a delayed preemergence application to rice. Weed Technology, 32: 537–543. https://doi.org/10.1017/wet.2018.57
 
Godwin J., Norsworthy J.K., Scott R.C., Rice M. (2018b): Selectivity of very-long-chain fatty acid-inhibiting herbicides in rice as influenced by application timing and soil texture. Crop, Forage and Turfgrass Management, 4: 1–9. https://doi.org/10.2134/cftm2018.03.0016
 
Hurle K., Walker A. (1980): Persistence and its prediction. In: Hance K.A. (ed.): Interactions between Herbicides and the Soil. London, Academic Press, 83–122. ISBN-13: 978-0123238405
 
Inoue M.H., Santana D.C., de Oliveira R.S.Jr., Clemente R.A., Dallacort R., Possamai A.C.S., Santana C.T.C., Pereira K.M. (2010): Leaching potential of herbicides used in cotton crop under soil column conditions. Planta Daninha, 28: 825–833. https://doi.org/10.1590/S0100-83582010000400016
 
Jursík M., Hamouzová K., Soukup J., Šuk J. (2016): Effect of nonwoven fabric cover on the efficacy and selectivity of pendimethalin in lettuce. Scientia Horticulturae, 200: 7–12.  https://doi.org/10.1016/j.scienta.2015.12.054
 
Jursík M., Janků J., Holec J., Soukup J. (2008): Efficiency and selectivity of herbicide Merlin 750 WG (isoxaflutole) in relation to dose and precipitation after application. Journal of Plant Diseases and Protection, Special Issue 21: 551–556.
 
Jursík M., Kočárek M., Hamouzová K., Soukup J., Venclová V. (2013): Effect of precipitation on the dissipation, efficacy and selectivity of three chloroacetamide herbicides in sunflower. Plant, Soil and Environment, 59: 175–182. https://doi.org/10.17221/750/2012-PSE
 
Jursík M., Soukup J., Holec J., Andr J. (2011): Important aspects of chemical weed control: ways of herbicide selectivity to crops. Listy Cukrovarnické a Řepařské, 127: 178–183.
 
Jursík M., Soukup J., Holec J., Andr J., Hamouzová K. (2015): Efficacy and selectivity of pre-emergent sunflower herbicides under different soil moisture conditions. Plant Protection Science, 51: 214–222. https://doi.org/10.17221/82/2014-PPS
 
Jursík M., Šuk J., Kolářová M., Soukup J. (2019): Effect of irrigation and soil adjuvant on the efficacy and selectivity of pendimethalin and metazachlor in kohlrabi. Scientia Horticulturae, 246: 871–878. https://doi.org/10.1016/j.scienta.2018.11.062
 
Kerr G.W., Stahlman P.W., Dille J.A. (2004): Soil pH and cation exchange capacity affects sunflower tolerance to sulfentrazone. Weed Technology, 18: 243–247. https://doi.org/10.1614/WT-03-025R
 
Kewat M.L., Pandey J., Kulshrestha G. (2001): Persistence of pendimethalin in soybean (Glycine max)-wheat (Triticum aestivum) sequence following pre-emergence application to soybean. Indian Journal of Agronomy, 46: 23–26.
 
Kočárek M., Artikov H., Voříšek K., Borůvka L. (2016): Pendimethalin degradation in soil and its interaction with soil microorganisms. Soil and Water Research, 11: 213–219. https://doi.org/10.17221/226/2015-SWR
 
Kočárek M., Kodešová R., Kozák J., Drábek O. (2010): Field study of chlorotoluron transport and its prediction by the BPS mathematical model. Soil and Water Research, 5: 153–160. https://doi.org/10.17221/42/2010-SWR
 
Kurtenbach M.E., Johnson E.N., Gulden R.H., Willenborg C.J. (2019): Tolerance of flax (Linum usitatissimum) to fluthiacet-methyl, pyroxasulfone, and topramezone. Weed Technology, 33: 509–517. https://doi.org/10.1017/wet.2019.8
 
Lin H.T., Chen S.W., Shen C.J., Chu C. (2007): Dissipation of pendimethalin in the garlic (Allium sativum L.) under subtropical condition. Bulletin of Environmental Contamination and Toxicology, 79: 84–86. https://doi.org/10.1007/s00128-007-9100-3
 
Meier U. (2018): Growth Stages of Mono- and Dicotyledonous Plants. BBCH-Monograph. Quedlinburg, Julius Kühn-Institut. ISBN: 978-3-95547-071-5
 
Mueller T.C., Shaw D.R., Witt W.W. (1999): Relative dissipation of acetochlor, alachlor, metolachlor and SAN 582 from three surface soils. Weed Technology, 13: 341–346. https://doi.org/10.1017/S0890037X0004183X
 
Nádasy E., Nádasy M., Nagy V. (2008): Effect of soil herbicides on development of sunflower hybrid. Cereal Research Communications, 36: 847–850.
 
Olson B.L.S., Zollinger R.K., Thompson C.R., Peterson D., Jenks B., Moechnig M., Stahlman P. (2011): Pyroxasulfone with and without sulfentrazone in sunflower (Helianthus annuus). Weed Technology, 25: 217–221. https://doi.org/10.1614/WT-D-10-00089.1
 
Pannacci E., Onofri A., Covarelli G. (2007): Biological activity, availability and duration of phytotoxicity for imazamox in four different soils of central Italy. Weed Research, 46: 243–250. https://doi.org/10.1111/j.1365-3180.2006.00503.x
 
Pannacci E., Graziani F., Covarelli G. (2007): Use of herbicide mixtures for pre and post-emergence weed control in sunflower (Helianthus annuus). Crop Protection, 26: 1150–1157. https://doi.org/10.1016/j.cropro.2006.10.008
 
Renaud F.G., Brown C.D., Fryer C.J., Walker A. (2004): A lysimeter experiment to investigate temporal changes in the availability of pesticide residues for leaching. Environmental Pollution, 131: 81–91. https://doi.org/10.1016/j.envpol.2004.02.028
 
Sadowski J., Kucharski M., Wujek B. (2012): Influence of soil type on metazachlor decay. Progress in Plant Protection, 52: 437–440.
 
Shipitalo M.J., Edwards W.M., Dick W.A., Owens L. (1990): Initial storm effects on macropore transport of surface-applied chemicals in no-till soil. Soil Science Society of America Journal, 54: 1530–1536. https://doi.org/10.2136/sssaj1990.03615995005400060004x
 
Si Y.B., Takagi K., Iwasaki A., Zhou D.M. (2009): Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils. Pest Management Science, 65: 956–962. https://doi.org/10.1002/ps.1779
 
Sigua G.C., Isensee A.R., Sadeghi A.M. (1993): Influence of rainfall intensity and crop residue on leaching of atrazine through intact no-till soil cores. Soil Science, 156: 225–232. https://doi.org/10.1097/00010694-199310000-00002
 
Singh R.P., Verma S.K., Singh R.K. (2016): Effects of herbicides on growth and yield of Cicer arietinum L. under rainfed condition. Bangladesh Journal of Botany, 45: 305–311.
 
Soni N., Leon R.G., Erickson J.E., Ferrell J.A., Silveira M.L. (2015): Biochar decreases atrazine and pendimethalin preemergence herbicidal activity. Weed Technology, 29: 359–366. https://doi.org/10.1614/WT-D-14-00142.1
 
Steckel L.E., Simmons F.W., Sprague C.L. (2013): Soil factor effects on tolerance of two corn (Zea mays) hybrids to isoxaflutole plus flufenacet. Weed Technology, 17: 599–604.
 
Streibig J.C., Kudsk P., Jensen J.E. (1998): A general joint action model for herbicide mixtures. Pesticide Science, 53: 21–28. https://doi.org/10.1002/(SICI)1096-9063(199805)53:1<21::AID-PS748>3.0.CO;2-L
 
Tsiropoulos N.G., Miliadis G.E. (1998): Field persistence studies on pendimethalin residues in onions and soil after herbicide postemergence application in onion cultivation. Journal of Agricultural and Food Chemistry, 46: 291–295. https://doi.org/10.1021/jf970712h
 
Vasilakoglou I.B., Eleftherohorinos I.G., Dhima K.B. (2001): Activity, adsorption and mobility of three acetanilide and two new amide herbicides. Weed Research, 41: 535–546. https://doi.org/10.1046/j.1365-3180.2001.00256.x
 
Vischetti C., Marucchini C., Leita L., Cantone P., Danuso F., Giovanardy R. (2002): Behaviour of two sunflower herbicides (metobromuron, aclonifen) in soil. European Journal of Agronomy, 16: 231–238. https://doi.org/10.1016/S1161-0301(01)00136-8
 
Wanjari R.H., Yadurju N.T., Ahuja K.N. (2001): Critical period of crop-weed competition in rainy-season sunflower (Helianthus annuus). Indian Journal of Agronomy, 46: 309–313.
 
Wischmeier W.H., Mannering J.V. (1969): Relation of soil properties to its erodibility. Soil Science Society of America Journal, 33: 131–137. https://doi.org/10.2136/sssaj1969.03615995003300010035x
 
Zanatta J.F., Procópio S.O., Manica R., Pauletto E.A., Cargnelutti Filho A., Vargas L., Sganzerla D.C., Rosenthal M.D.A., Pinto J.J.O. (2008): Soil water contents and fomesafen efficacy in controlling Amaranthus hybridus. Planta Daninha, 26: 143–155. https://doi.org/10.1590/S0100-83582008000100015
 
Ziska L.H., Dukes J.S. (2011): Weed Biology and Climate Change. Ames, Willey-Blackwell. ISBN: 9780813814179
 
download PDF

© 2020 Czech Academy of Agricultural Sciences