Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover
Abd-Alla M.H., El-Enany A.-W.E., Nafady N.A., Khalaf D.M., Morsy F.M. (2014): Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiology Research, 169: 49‒58.
https://doi.org/10.1016/j.micres.2013.07.007
Abdel-Fattah G.M., Mohamedin A.H. (2000): Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biology and Fertility of Soils, 32: 401‒409.
https://doi.org/10.1007/s003740000269
Aliasgharzad N., Neyshabouri M.R., Salimi G. (2006): Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia, 61: S324‒S328.
https://doi.org/10.2478/s11756-006-0182-x
Bethlenfalvay G.J., Ames R.N. (1987): Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Science Society of America Journal, 51: 834‒837.
https://doi.org/10.2136/sssaj1987.03615995005100030049x
Bever J.D., Dickie I.A., Facelli E., Facelli J.M., Klironomos J., Moora M., Rilling M.C., Stock W.D., Tibbett M., Zobel M. (2010): Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 25: 468‒478.
https://doi.org/10.1016/j.tree.2010.05.004
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248‒254.
https://doi.org/10.1016/0003-2697(76)90527-3
Cheng Z., McConkey B.J., Glick B.R. (2010): Proteomic studies of plant-bacterial interactions. Soil Biology and Biochemistry, 42: 1673‒1684.
https://doi.org/10.1016/j.soilbio.2010.05.033
Cruz C., Egsgaard H., Trujillo C., Ambus P., Requena N., Martins-Loucao M.A., Jakobsen I. (2007): Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiology, 144: 782‒792.
https://doi.org/10.1104/pp.106.090522
De Oliveira Júnior J.Q., Jesus E.C., Lisboa F.J., Berbara R.L.L., De Faria S.M. (2017): Nitrogen-fixing bacteria and arbuscular mycorrhizal fungi in Piptadenia gonoacantha (Mart.) Macbr. Brazilian Journal of Microbiology, 48: 95‒100.
https://doi.org/10.1016/j.bjm.2016.10.013
Hack C.M., Porta M., Schäufele R., Grimoldi A.A. (2019): Arbuscular mycorrhiza mediated effects on growth, mineral nutrition and biological nitrogen fixation of Melilotus alba Med. in a subtropical grassland soil. Applied Soil Ecology, 134: 38‒44.
https://doi.org/10.1016/j.apsoil.2018.10.008
He J.D., Chi G.G., Zou Y.N., Shu B., Wu Q.S., Srivastava A.K., Kuča K. (2020): Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Applied Soil Ecology, 154: 103592.
https://doi.org/10.1016/j.apsoil.2020.103592
He J.D., Dong T., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2019): Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243: 64‒69.
https://doi.org/10.1016/j.scienta.2018.08.010
Herridge D.F., Peoples M.B., Boddey R.M. (2008): Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311: 1‒18.
https://doi.org/10.1007/s11104-008-9668-3
Hodge A. (2014): Interactions between arbuscular mycorrhizal fungi and organic material substrates. Advances in Applied Microbiology, 89: 47‒99.
Ibiang Y.B., Mitsumoto H., Sakamoto K. (2017): Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, phosphorus, and polyphenols in soybean (Glycine max (L.) Merr.) under excess zinc. Environmental and Experimental Botany, 137: 1‒13.
https://doi.org/10.1016/j.envexpbot.2017.01.011
Jin H.R., Jiang D.H., Zhang P.H. (2011): Effect of carbon and nitrogen availability on the metabolism of amino acids in the germinating spores of arbuscular mycorrhizal fungi. Pedosphere, 21: 432‒442.
https://doi.org/10.1016/S1002-0160(11)60145-8
Larimer A.L., Bever J.D., Clay K. (2010): The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 51: 139‒148.
https://doi.org/10.1007/s13199-010-0083-1
Ledgard S.F., Sprosen M.S., Penno J.W., Rajendram G.S. (2001): Nitrogen fixation by white clover in pastures grazed by dairy cows: temporal variation and effects of nitrogen fertilization. Plant and Soil, 229: 177‒187.
https://doi.org/10.1023/A:1004833804002
Liyanaarachchi G.V.V., Mahanama K.R.R., Somasiri H.P.P.S., Pumyasiri P.A.N. (2018): Development and validation of a method for direct, underivatized analysis of free amino acids in rice using liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1568: 131‒139.
https://doi.org/10.1016/j.chroma.2018.07.035
Maillet F., Poinsot V., André O., Puech-Pages V., Haouy A., Gueunier M., Cromer L., Giraudet D., Formey D., Niebel A., Martinez E.A., Driguez H., Bécard G., Dénarié J. (2011): Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469: 58‒63.
https://doi.org/10.1038/nature09622
Masson-Boivin C., Sachs J.L. (2018): Symbiotic nitrogen fixation by rhizobia – the roots of a success story. Current Opinion in Plant Biology, 44: 7‒15.
https://doi.org/10.1016/j.pbi.2017.12.001
Máthá I., Tóth E., Mentes A., Szabó A., Márialigeti K., Schumann P., Felföldi T. (2018): A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie Van Leeuwenhoek, 111: 2175‒2183.
https://doi.org/10.1007/s10482-018-1110-0
Matsubara Y.I., Okada T., Liu J. (2014): Suppression of fusarium crown rot and increase in several free amino acids in mycorrhizal asparagus. American Journal of Plant Sciences, 5: 235‒240.
https://doi.org/10.4236/ajps.2014.52031
Meng L.L., He J.D., Zou Y.N., Wu Q.S., Kuča K. (2020): Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant, Soil and Environment, 66: 183‒189.
https://doi.org/10.17221/100/2020-PSE
Musyoka D.M., Njeru E.M., Nyamwange M.M., Maingi J.M. (2020): Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams (Vigna radiata L.) under water stress. Journal of Plant Nutrition, 43: 1036‒1047.
https://doi.org/10.1080/01904167.2020.1711940
Oruru M.B., Njeru E.M. (2016): Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. BioMed Research International, 2016: 4376240.
https://doi.org/10.1155/2016/4376240
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158‒161.
https://doi.org/10.1016/S0007-1536(70)80110-3
Shockley F.W., McGraw R.L., Garrett H.E. (2004): Growth and nutrient concentration of two native forage legumes inoculated with Rhizobium and mycorrhiza in Missouri, USA. Agroforestry Systems, 60: 137‒142.
https://doi.org/10.1023/B:AGFO.0000013269.19284.53
Sood S.G. (2003): Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiology Ecology, 45: 219‒227.
https://doi.org/10.1016/S0168-6496(03)00155-7
Wu Q.S., He J.D., Srivastava A.K., Zhang F., Zou Y.N. (2019a): Development of propagation technique of indigenous AMF and their inoculation response in citrus. Indian Journal of Agricultural Sciences, 89: 1190‒1194.
Wu Q.S., He J.D., Srivastava A.K., Zou Y.N., Kuča K. (2019b): Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 39: 1149‒1158.
https://doi.org/10.1093/treephys/tpz039
Zhang S.Q. (2009): Study on the distribution and number change of rhizobium on alfalfa plants and seeds. [Master’s Thesis]. Lanzhou, Gansu Agricultural University, 51.
Zhang F., Zou Y.N., Wu Q.S., Kuča K. (2020): Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 171: 103962.
https://doi.org/10.1016/j.envexpbot.2019.103926