Exogenously spermidine alleviates damage from drought stress in the photosystem II of tall fescue

https://doi.org/10.17221/236/2021-PSECitation:

Liu Y., Hao C.X., Wang G.Y., Li Q., Shao A. (2021): Exogenously spermidine alleviates damage from drought stress in the photosystem II of tall fescue. Plant Soil Environ., 67: 558–566.

 

download PDF

Drought stress is one of the major limiting factors to crop productivity around the globe. It has been well documented that spermidine (Spd) plays an important key role in plant growth and development, especially in the defense response to stress. The objective of this study was to explore the effect of Spd on protecting photosynthetic apparatus in tall fescue under drought stress. Spd application significantly improved the OJIP (fluorescence rise kinetics O-J-I-P) curve compared to non-Spd application during drought. Exogenous Spd exhibited higher FJ (fluorescence value at the J-step (2 ms) of OJIP) and FP (maximal recorded fluorescence intensity, at the peak P of OJIP) than non-Spd application. Moreover, normalised total complementary area (Sm) and the number of QA (primary quinone acceptor of PS II) reduction events (N) significantly reduced after the application of Spd in tall fescue under drought stress. In terms of quantum yields and efficiencies and specific energy fluxes, exogenous Spd notably decreased the values of efficiency of electron transfer from QB (secondary quinone acceptor of PS II) to PSI acceptors (δR0), absorption flux per RC (ABS/RC) and trapping flux per RC (TR0/RC) compared to the non-Spd application without watering. All the above suggested that exogenous Spd facilitated the photosynthetic system of tall fescue in drought. These observations involved in the electron transport capacity of photosystem II assist in understanding better the protective role of exogenous Spd in tall fescue under drought stress.

 

References:
Ahmad Z., Anjum S., Waraich E.A., Ayub M.A., Ahmad T., Tariq R.M.S., Ahmad R., Iqbal M.A. (2018): Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. Journal of Plant Nutrition, 41: 1734–1743. https://doi.org/10.1080/01904167.2018.1459688
 
Asada K. (2006): Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141: 391–396. https://doi.org/10.1104/pp.106.082040
 
Begum N., Ahanger M.A., Su Y.Y., Lei Y.F., Mustafa N.S.A., Ahmad P., Zhang L.X. (2019): Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants (Basel), 8: 579. https://doi.org/10.3390/plants8120579
 
Chen K., Chen L., Fan J.B., Fu J.M. (2013): Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. Photosynthetic Research, 116: 21–31. https://doi.org/10.1007/s11120-013-9883-5
 
Chen K., Sun X.Y., Amombo E., Zhu Q., Zhao Z.J., Chen L., Xu Q.G., Fu J.M. (2014): High correlation between thermotolerance and photosystem II activity in tall fescue. Photosynthetic Research, 122: 305–314. https://doi.org/10.1007/s11120-014-0035-3
 
Chen K., Zhang M.N., Zhu H.H., Huang M.Y., Zhu Q., Tang D.Y., Han X.L., Li J.L., Sun J., Fu J.M. (2017): Ascorbic acid alleviates damage from heat stress in the photosystem II of tall fescue in both the photochemical and thermal phases. Frontiers in Plant Science, 8: 1373. https://doi.org/10.3389/fpls.2017.01373
 
Chen Z.F., Wang Z., Yang Y.G., Li M., Xu B.C. (2018): Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae, 228: 1–9. https://doi.org/10.1016/j.scienta.2017.10.004
 
Cohen I., Zandalinas S.I., Huck C., Fritschi F.B., Mittler R. (2021): Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171: 66–76. https://doi.org/10.1111/ppl.13203
 
D’Alessandro S., Havaux M. (2019): Sensing β-carotene oxidation in photosystem II to master plant stress tolerance. New Phytologist, 223: 1776–1783. https://doi.org/10.1111/nph.15924
 
Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M., Goltsev V., Paunov M., Rapacz M., Wójcik-Jagła M., Pawluśkiewicz B., Bąba W., Brestic M. (2019): Exploration of chlorophyll a fluorescence and plant gas rexchange parameters as indicators of drought tolerance in perennial ryegrass. Sensors (Basel), 19: 2736. https://doi.org/10.3390/s19122736
 
Farooq A., Bukhari S.A., Akram N.A., Ashraf M., Wijaya L., Alyemeni M.N., Ahmad P. (2020): Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants (Basel), 9: 104. https://doi.org/10.3390/plants9010104
 
Hniličková H., Hnilička F., Martinková J., Kraus K. (2017): Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63: 362–367. https://doi.org/10.17221/398/2017-PSE
 
Hu L.P., Xiang L.X., Zhang L., Zhou X.T., Zou Z.R., Hu X.H. (2014): The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress. PLoS One, 9: e110855.
 
Huang W., Zhang S.B., Liu T. (2018): Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant Panax notoginseng. Frontiers in Plant Science, 15: 637. https://doi.org/10.3389/fpls.2018.00637
 
Huang B.R., Gao H.W. (2000): Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Science, 40: 196–203. https://doi.org/10.2135/cropsci2000.401196x
 
Huang S., Zuo T., Ni W.Z. (2020): Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. Planta, 251: 36. https://doi.org/10.1007/s00425-019-03330-z
 
Ioannidis N.E., Kotzabasis K. (2007): Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1767: 1372–1382. https://doi.org/10.1016/j.bbabio.2007.10.002
 
Jan S., Abbas N., Ashraf M., Ahmad P. (2019): Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma, 256: 313–329. https://doi.org/10.1007/s00709-018-1310-5
 
Kalaji H.M., Jajoo A., Oukarroum A., Brestič M., Živčák M., Samborska I.A., Cetner M.D., Łukasik I., Goltsev V., Ladle R.J., Dąbrowski P., Ahmad P. (2014): Chapter 15 – The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. In: Ahmad P., Rasool S. (eds.): Emerging Technologies and Management of Crop Stress Tolerance. San Diego, Academic Press, 347–384. ISBN: 978-0-12-800876-8
 
Kaya C., Ashraf M., Wijaya L., Ahmad P. (2019): The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiology and Biochemistry, 143: 119–128. https://doi.org/10.1016/j.plaphy.2019.08.024
 
Kaya C., Şenbayram M., Akram N.A., Ashraf M., Alyemeni M.N., Ahmad P. (2020): Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports, 10: 6432. https://doi.org/10.1038/s41598-020-62669-6
 
Khoshbakht D., Asghari M.R., Haghighi M. (2018): Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56: 1313–1325. https://doi.org/10.1007/s11099-018-0839-z
 
Kosar F., Akram N.A., Ashraf M., Ahmad A., Alyemeni M.N., Ahmad P. (2021): Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiologia Plantarum, 172: 317–333. https://doi.org/10.1111/ppl.13155
 
Li Z., Zhou H., Peng Y., Zhang X.Q., Ma X., Huang L.K., Yan Y.H. (2015): Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regulation, 76: 71–82. https://doi.org/10.1007/s10725-014-9978-9
 
Li L.J., Gu W.R., Li J., Li C.F., Xie T.L., Qu D.Y., Meng Y., Li C.F., Wei S. (2018): Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiology and Biochemistry, 129: 35–55. https://doi.org/10.1016/j.plaphy.2018.05.017
 
Najafpour M.M., Allakhverdiev S.I. (2015): Recent progress in the studies of structure and function of photosystems I and II. Journal of Photochemistry and Photobiology B, 152: 173–175. https://doi.org/10.1016/j.jphotobiol.2015.11.003
 
Ni L.X., Acharya K., Hao X.Y., Li S.Y., Li Y., Li Y.P. (2012): Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence. Bulletin of Environmental Contamination and Toxicology, 89: 1165–1169. https://doi.org/10.1007/s00128-012-0843-0
 
Patel M.K., Kumar M., Li W.Q., Luo Y., Burritt D.J., Alkan N., Tran L.-S.P. (2020): Enhancing salt tolerance of plants: from metabolic reprogramming to exogenous chemical treatments and molecular approaches. Cells, 9: 2492. https://doi.org/10.3390/cells9112492
 
Raja V., Qadir S.U., Alyemeni M.N., Ahmad P. (2020): Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 10: 208. https://doi.org/10.1007/s13205-020-02206-4
 
Shao R.X., Wang K.B., Shangguan Z.P. (2010): Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. Journal of Plant Physiology, 167: 472–479. https://doi.org/10.1016/j.jplph.2009.10.020
 
Stirbet A., Govindjee (2011): On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104: 236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
 
Strasser B.J. (1997): Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 52: 147–155. https://doi.org/10.1023/A:1005896029778
 
Takamizo T., Sato H. (2020): Protocol for Agrobacterium-mediated transformation of tall fescue and future perspective on the application of genome editing. Plant Biotechnology, 37: 157–161. https://doi.org/10.5511/plantbiotechnology.20.0309a
 
Unal D., Tuney I., Sukatar A. (2008): The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352 nm) stress in Physcia semipinnata. Journal of Photochemistry and Photobiology B: Biology, 90: 64–68. https://doi.org/10.1016/j.jphotobiol.2007.11.004
 
Van Heerden P.D.R., Strasser R.J., Krüger G.H.J. (2004): Reduction of dark chilling stress in N-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiologia Plantarum, 121: 239–249. https://doi.org/10.1111/j.0031-9317.2004.0312.x
 
Wang G.Y., Bi A.Y., Amombo E., Li H.Y., Zhang L., Cheng C., Hu T., Fu J.M. (2017): Exogenous calcium enhances the photosystem II photochemistry response in salt stressed tall fescue. Frontiers in Plant Science, 8: 2032. https://doi.org/10.3389/fpls.2017.02032
 
Wang Y.X., Li X.Y., Liu N.N., Wei S.M., Wang J.A., Qin F.J., Suo B. (2020): The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC Plant Biology, 20: 96. https://doi.org/10.1186/s12870-020-2297-6
 
Williams A., de Vries F.T. (2020): Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 225: 1899–1905. https://doi.org/10.1111/nph.16223
 
Zhang L., Hu T., Amombo E., Wang G.Y., Xie Y., Fu J.M. (2017): The alleviation of heat damage to photosystem II and enzymatic antioxidants by exogenous spermidine in tall fescue. Front Plant Science, 8: 1747. https://doi.org/10.3389/fpls.2017.01747
 
Zhang Z.Y., Zhao Z.Q., Hou Y.L., Wang H., Li X.P., He G., Zhang M.M. (2019): Aqueous platinum(II)-cage-based light-harvesting system for photocatalytic cross-coupling hydrogen evolution reaction. Angewandte Chemie, 58: 8862–8866. https://doi.org/10.1002/anie.201904407
 
Zhang K.L., Zhang Y., Sun J., Meng J.S., Tao J. (2021): Deterioration of orthodox seeds during ageing: influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158: 475–485. https://doi.org/10.1016/j.plaphy.2020.11.031
 
Zhu H.H., Ai H.L., Cao L.W., Sui R., Ye H.P., Du D.Y., Sun J., Yao J., Chen K., Chen L. (2018): Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress. Ecotoxicology and Environmental Safety, 160: 349–356. https://doi.org/10.1016/j.ecoenv.2018.05.066
 
Živčák M., Brestič M., Olšovská K., Slámka P. (2008): Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant, Soil and Environment, 54: 133–139. https://doi.org/10.17221/392-PSE
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti