Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts G., Zou Y., Wu Q., Xu Y., Kuča K. (2020): Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant Soil Environ., 66: 295-302.
download PDF

Walnut, an important oil fruit tree, is dependent on arbuscular mycorrhizas, while mycorrhizal roles and efficient mycorrhizal fungus in walnuts are unknown. This study was conducted to evaluate the effect of five arbuscular mycorrhizal fungi (AMF) species, including Acaulospora scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae, and G. versiforme on plant growth, leaf gas exchange, root morphology, and root nutrient contents of walnut (Juglans regia L. Liaohe 1) seedlings. Three months of AMF inoculations later, root mycorrhizal colonisation achieved 47.0% to 76.4%. AMF treatments increased plant growth performance, dependent on AMF species. AMF-inoculated plants with D. spurca, G. etunicatum, and G. mosseae showed higher root length, projected area, surface area, and volume than non-AMF plants. Except for G. versiforme, the other four AMF treatments almost significantly increased leaf photosynthesis rate, transpiration rate, and stomatal conductivity, while reduced intercellular CO2 concentrations and leaf temperature. AMF affected root nutrient contents, dependent on AMF and mineral nutrient species. These results, thereby, concluded that AMF had a positive role in walnuts, dependent on AMF species, and D. spurca was the best mycorrhizal fungus for walnut. Such results provide the potential possibility of a developing consortium of AMF in walnut cultivation management.

Aguín O., Mansilla J.P., Vilariño A., Sainz M.J. (2004): Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Enology and Viticulture, 55: 108‒111.
Arines J., Porto M.E., Vilariño A. (1992): Effect of manganese on vesicular-arbuscular mycorrhizal development in red clover plants and on soil Mn-oxidizing bacteria. Mycorrhiza, 1: 127‒131.
Baslam M., Garmendia I., Goicoechea N. (2011): Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. Journal of Agricultural and Food Chemistry, 59: 5504‒5515.
Cabral L., Soares C.R.F.S., Giachini A.J., Siqueira J.O. (2015): Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31: 1655‒1664.
Carretero C.L., Cantos M., García J.L., Azcón R., Troncoso A. (2009): Growth responses of micropropagated cassava clones as affected by Glomus intraradices colonization. Journal of Plant Nutrition, 32: 261‒273.
De Araújo Diniz P.F., de Oliveira L.E.M., Gomes M.P., de Castro E.M., Mesquita A.C., da Silva-Bonome L.T., da Silva L. (2010): Growth, biophysical parameters and anatomical aspects of young rubber tree plants inoculated with arbuscular mycorrhizal fungi Glomus clarum. Acta Botanica Brasilica, 24: 65‒72.
Ding Y.E., Fan Q.F., He J.D., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2020): Effects of mycorrhizas on physiological performance and root TIPs expression in trifoliate orange under salt stress. Archives of Agronomy and Soil Science, 66: 182‒192.
Dixon R.K. (1988): Seed source and vesicular-arbuscular mycorrhizal symbiont affects growth of Juglans nigra seedlings. New Forests, 2: 203‒211.
Dolcet-Sanjuan R., Claveria E., Camprubi A., Estaún V., Calvet C. (1996): Micropropagation of walnut trees (Juglans regia L.) and response to arbuscular mycorrhizal inoculation. Agronomie, 16: 639‒646.
Eissenstat D.M., Kucharski J.M., Zadworny M., Adams T.S., Koide R.T. (2015): Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208: 114‒124.
Feng Q.G., Gao J.C., Liu M.F., Du R.F. (2005): Investigation and research on endophytic fungi resources of fruit trees in Hebei Province. Journal of Hebei Forestry Science and Technology, 3: 22‒23.
Gąstoł M., Domagała-Świątkiewicz I. (2015): Mycorrhizal inoculation of apple in replant soils – enhanced tree growth and mineral nutrient status. Acta Scientiarum Polonorum. Hortorum Cultus, 14: 17‒37.
He J.D., Dong T., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2019): Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243: 64‒69.
Heinonsalo J., Buée M., Vaario L.M. (2016): Root-endophytic fungi cause morphological and functional differences in Scots pine roots in contrast to ectomycorrhizal fungi. Botany, 95: 203‒210.
Ibijbijen J., Urquiaga S., Ismaili M., Alves B.J.R., Boddey R.M. (1996): Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytologist, 134: 353‒360.
Jin H., Pfeffer P.E., Douds D.D., Piotrowski E., Lammers P.J., Shachar-Hill Y. (2005): The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 168: 687‒696.
Kostenko V., Pechko V., Ivanova O. (2018): Impact of mycorrhizal fungi on walnuts and grapes resistance to pathogens in Ukrainian orchards – a review. Ukrainian Journal of Ecology, 8: 533‒541.
Li C.C., Zhou J., Wang X.R., Liao H. (2019): A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant, Cell and Environment, 42: 2015‒2027.
Liu C.Y., Wang P., Zhang D.J., Zou Y.N., Kuča K., Wu Q.S. (2018): Mycorrhiza-induced change in root hair growth is associated with IAA accumulation and expression of EXPs in trifoliate orange under two P levels. Scientia Horticulturae, 234: 227‒235.
Magdziak Z., Kozlowska M., Kaczmarek Z., Mleczek M., Chadzinikolau T., Drzewiecka K., Golinski P. (2011): Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicology and Environmental Safety, 74: 33‒40.
Mathur S., Sharma M.P., Jajoo A. (2018): Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B – Biology, 180: 149‒154.
Melichar M.W., Garrett H.E., Cox G.S. (1986): Mycorrhizae benefit growth and development of eastern black walnut seedlings. Northern Journal of Applied Forestry, 3: 151‒153.
Pfeiffer C.M., Bloss H.E. (1988): Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytologist, 108: 315‒321.
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158‒161.
Ponder F.Jr. (1979): Soil Structure and Mycorrhizae Encourage Black Walnut Growth on Old Fields. St. Paul, North Central Forest Experiment Station, 132.
Posta K., Marschner H., Römheld V. (1994): Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza, 5: 119‒124.
Shao Y.D., Zhang D.J., Hu X.C., Wu Q.S., Jiang C.J., Xia T.J., Gao X.B., Kuča K. (2018): Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment, 64: 283‒289.
Walder F., van der Heijden M.G.A. (2015): Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants, 1: 15159.
Wu Q.S., Cao M.Q., Zou Y.N., Wu C., He X.H. (2016): Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Scientia Horticulturae, 199: 95‒102.
Wu Q.S., He J.D., Srivastava A.K., Zhang F., Zou Y.N. (2019a): Development of propagation technique of indigenous AMF and their inoculation response in citrus. Indian Journal of Agricultural Sciences, 89: 1190‒1194.
Wu Q.S., He J.D., Srivastava A.K., Zou Y.N., Kuča K. (2019b): Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 39: 1149‒1158.
Xie M.M., Wu Q.S. (2018): Arbuscular mycorrhizal fungi regulate flowering of Hyacinths orientalis L. Anna Marie. Emirates Journal of Food and Agriculture, 30: 144‒149.
Xu J., Tang M. (2013): Relationship between arbuscular mycorrhizal fungi and soil factors in the rhizosphere of different tree species in Pb-Zn polluted mine. Journal of Northwest A & F University (Nat. Sci. Ed.), 41: 75‒80.
Yang W.H., Zhang Z., Zhang Z.M., Chen H., Liu J., Ali M., Liu F., Li L. (2013): Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment. PLoS One, 8: e73778.
Zangaro W., Nishidate F.R., Vandresen J., Andrade G., Nogueira A.M. (2007): Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of Tropical Ecology, 23: 53‒62.
Zhang F., Wang P., Zou Y.N., Wu Q.S., Kuča K. (2019): Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science, 65: 1316‒1330.
Zhang F., Zou Y.N., Wu Q.S., Kuča K. (2020): Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 171: 103926.
Zhang T., Hu Y.J., Zhang K., Tian C.Y., Guo J.X. (2018): Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117: 13‒19.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti