Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts

https://doi.org/10.17221/240/2020-PSECitation:Huang G., Zou Y., Wu Q., Xu Y., Kuča K. (2020): Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant Soil Environ., 66: 295-302.
download PDF

Walnut, an important oil fruit tree, is dependent on arbuscular mycorrhizas, while mycorrhizal roles and efficient mycorrhizal fungus in walnuts are unknown. This study was conducted to evaluate the effect of five arbuscular mycorrhizal fungi (AMF) species, including Acaulospora scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae, and G. versiforme on plant growth, leaf gas exchange, root morphology, and root nutrient contents of walnut (Juglans regia L. Liaohe 1) seedlings. Three months of AMF inoculations later, root mycorrhizal colonisation achieved 47.0% to 76.4%. AMF treatments increased plant growth performance, dependent on AMF species. AMF-inoculated plants with D. spurca, G. etunicatum, and G. mosseae showed higher root length, projected area, surface area, and volume than non-AMF plants. Except for G. versiforme, the other four AMF treatments almost significantly increased leaf photosynthesis rate, transpiration rate, and stomatal conductivity, while reduced intercellular CO2 concentrations and leaf temperature. AMF affected root nutrient contents, dependent on AMF and mineral nutrient species. These results, thereby, concluded that AMF had a positive role in walnuts, dependent on AMF species, and D. spurca was the best mycorrhizal fungus for walnut. Such results provide the potential possibility of a developing consortium of AMF in walnut cultivation management.

References:
Aguín O., Mansilla J.P., Vilariño A., Sainz M.J. (2004): Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Enology and Viticulture, 55: 108‒111.
 
Arines J., Porto M.E., Vilariño A. (1992): Effect of manganese on vesicular-arbuscular mycorrhizal development in red clover plants and on soil Mn-oxidizing bacteria. Mycorrhiza, 1: 127‒131. https://doi.org/10.1007/BF00203260
 
Baslam M., Garmendia I., Goicoechea N. (2011): Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. Journal of Agricultural and Food Chemistry, 59: 5504‒5515. https://doi.org/10.1021/jf200501c
 
Cabral L., Soares C.R.F.S., Giachini A.J., Siqueira J.O. (2015): Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World Journal of Microbiology and Biotechnology, 31: 1655‒1664. https://doi.org/10.1007/s11274-015-1918-y
 
Carretero C.L., Cantos M., García J.L., Azcón R., Troncoso A. (2009): Growth responses of micropropagated cassava clones as affected by Glomus intraradices colonization. Journal of Plant Nutrition, 32: 261‒273. https://doi.org/10.1080/01904160802608601
 
De Araújo Diniz P.F., de Oliveira L.E.M., Gomes M.P., de Castro E.M., Mesquita A.C., da Silva-Bonome L.T., da Silva L. (2010): Growth, biophysical parameters and anatomical aspects of young rubber tree plants inoculated with arbuscular mycorrhizal fungi Glomus clarum. Acta Botanica Brasilica, 24: 65‒72.
 
Ding Y.E., Fan Q.F., He J.D., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2020): Effects of mycorrhizas on physiological performance and root TIPs expression in trifoliate orange under salt stress. Archives of Agronomy and Soil Science, 66: 182‒192. https://doi.org/10.1080/03650340.2019.1607313
 
Dixon R.K. (1988): Seed source and vesicular-arbuscular mycorrhizal symbiont affects growth of Juglans nigra seedlings. New Forests, 2: 203‒211. https://doi.org/10.1007/BF00029989
 
Dolcet-Sanjuan R., Claveria E., Camprubi A., Estaún V., Calvet C. (1996): Micropropagation of walnut trees (Juglans regia L.) and response to arbuscular mycorrhizal inoculation. Agronomie, 16: 639‒646. https://doi.org/10.1051/agro:19961008
 
Eissenstat D.M., Kucharski J.M., Zadworny M., Adams T.S., Koide R.T. (2015): Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208: 114‒124. https://doi.org/10.1111/nph.13451
 
Feng Q.G., Gao J.C., Liu M.F., Du R.F. (2005): Investigation and research on endophytic fungi resources of fruit trees in Hebei Province. Journal of Hebei Forestry Science and Technology, 3: 22‒23.
 
Gąstoł M., Domagała-Świątkiewicz I. (2015): Mycorrhizal inoculation of apple in replant soils – enhanced tree growth and mineral nutrient status. Acta Scientiarum Polonorum. Hortorum Cultus, 14: 17‒37.
 
He J.D., Dong T., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2019): Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243: 64‒69. https://doi.org/10.1016/j.scienta.2018.08.010
 
Heinonsalo J., Buée M., Vaario L.M. (2016): Root-endophytic fungi cause morphological and functional differences in Scots pine roots in contrast to ectomycorrhizal fungi. Botany, 95: 203‒210. https://doi.org/10.1139/cjb-2016-0161
 
Ibijbijen J., Urquiaga S., Ismaili M., Alves B.J.R., Boddey R.M. (1996): Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytologist, 134: 353‒360. https://doi.org/10.1111/j.1469-8137.1996.tb04640.x
 
Jin H., Pfeffer P.E., Douds D.D., Piotrowski E., Lammers P.J., Shachar-Hill Y. (2005): The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 168: 687‒696. https://doi.org/10.1111/j.1469-8137.2005.01536.x
 
Kostenko V., Pechko V., Ivanova O. (2018): Impact of mycorrhizal fungi on walnuts and grapes resistance to pathogens in Ukrainian orchards – a review. Ukrainian Journal of Ecology, 8: 533‒541. https://doi.org/10.15421/2018_246
 
Li C.C., Zhou J., Wang X.R., Liao H. (2019): A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant, Cell and Environment, 42: 2015‒2027. https://doi.org/10.1111/pce.13530
 
Liu C.Y., Wang P., Zhang D.J., Zou Y.N., Kuča K., Wu Q.S. (2018): Mycorrhiza-induced change in root hair growth is associated with IAA accumulation and expression of EXPs in trifoliate orange under two P levels. Scientia Horticulturae, 234: 227‒235. https://doi.org/10.1016/j.scienta.2018.02.052
 
Magdziak Z., Kozlowska M., Kaczmarek Z., Mleczek M., Chadzinikolau T., Drzewiecka K., Golinski P. (2011): Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicology and Environmental Safety, 74: 33‒40. https://doi.org/10.1016/j.ecoenv.2010.09.003
 
Mathur S., Sharma M.P., Jajoo A. (2018): Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B – Biology, 180: 149‒154. https://doi.org/10.1016/j.jphotobiol.2018.02.002
 
Melichar M.W., Garrett H.E., Cox G.S. (1986): Mycorrhizae benefit growth and development of eastern black walnut seedlings. Northern Journal of Applied Forestry, 3: 151‒153. https://doi.org/10.1093/njaf/3.4.151
 
Pfeiffer C.M., Bloss H.E. (1988): Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytologist, 108: 315‒321. https://doi.org/10.1111/j.1469-8137.1988.tb04168.x
 
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158‒161. https://doi.org/10.1016/S0007-1536(70)80110-3
 
Ponder F.Jr. (1979): Soil Structure and Mycorrhizae Encourage Black Walnut Growth on Old Fields. St. Paul, North Central Forest Experiment Station, 132.
 
Posta K., Marschner H., Römheld V. (1994): Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza, 5: 119‒124. https://doi.org/10.1007/BF00202343
 
Shao Y.D., Zhang D.J., Hu X.C., Wu Q.S., Jiang C.J., Xia T.J., Gao X.B., Kuča K. (2018): Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment, 64: 283‒289. https://doi.org/10.17221/126/2018-PSE
 
Walder F., van der Heijden M.G.A. (2015): Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants, 1: 15159. https://doi.org/10.1038/nplants.2015.159
 
Wu Q.S., Cao M.Q., Zou Y.N., Wu C., He X.H. (2016): Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Scientia Horticulturae, 199: 95‒102. https://doi.org/10.1016/j.scienta.2015.12.039
 
Wu Q.S., He J.D., Srivastava A.K., Zhang F., Zou Y.N. (2019a): Development of propagation technique of indigenous AMF and their inoculation response in citrus. Indian Journal of Agricultural Sciences, 89: 1190‒1194.
 
Wu Q.S., He J.D., Srivastava A.K., Zou Y.N., Kuča K. (2019b): Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 39: 1149‒1158. https://doi.org/10.1093/treephys/tpz039
 
Xie M.M., Wu Q.S. (2018): Arbuscular mycorrhizal fungi regulate flowering of Hyacinths orientalis L. Anna Marie. Emirates Journal of Food and Agriculture, 30: 144‒149.
 
Xu J., Tang M. (2013): Relationship between arbuscular mycorrhizal fungi and soil factors in the rhizosphere of different tree species in Pb-Zn polluted mine. Journal of Northwest A & F University (Nat. Sci. Ed.), 41: 75‒80.
 
Yang W.H., Zhang Z., Zhang Z.M., Chen H., Liu J., Ali M., Liu F., Li L. (2013): Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment. PLoS One, 8: e73778. https://doi.org/10.1371/journal.pone.0073778
 
Zangaro W., Nishidate F.R., Vandresen J., Andrade G., Nogueira A.M. (2007): Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of Tropical Ecology, 23: 53‒62. https://doi.org/10.1017/S0266467406003713
 
Zhang F., Wang P., Zou Y.N., Wu Q.S., Kuča K. (2019): Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science, 65: 1316‒1330. https://doi.org/10.1080/03650340.2018.1563780
 
Zhang F., Zou Y.N., Wu Q.S., Kuča K. (2020): Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 171: 103926. https://doi.org/10.1016/j.envexpbot.2019.103926
 
Zhang T., Hu Y.J., Zhang K., Tian C.Y., Guo J.X. (2018): Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117: 13‒19. https://doi.org/10.1016/j.indcrop.2018.02.087
 
download PDF

© 2020 Czech Academy of Agricultural Sciences