Micro plastics in soil ecosystem – A review of sources, fate, and ecological impact


Yu J.R., Adingo S., Liu X.L., Li X.D., Sun J., Zhang X.N. (2022): Micro plastics in soil ecosystem – A review of sources, fate, and ecological impact. Plant Soil Environ., 68: 1–17.


download PDF

In recent years, environmental experts and stakeholders have paid increased attention to the pollution of micro plastics in the soil. As persistent pollutants, micro plastics have a significant impact on the soil ecology, agricultural production, and the overall health of the ecological environment. Micro plastics can influence soil bio-physicochemical properties and the mobility of other contaminants in soil, with potentially significant implications on soil ecosystem functionality. Thus, functions including litter decomposition, soil aggregation or those related to nutrient cycling can be altered. Furthermore, micro plastics can influence soil biota at different trophic levels, and even threaten human health through food chains. Despite this potential negative interaction, there is limited research on micro plastics in the soil environment. The primary goals of this review are to summarise the sources, distribution characteristics, migration and degradation laws of micro plastics in the soil ecosystem, to summarise the combined effects of micro plastics and other pollutants in the soil ecosystem, to analyse the effects of micro plastics on soil physical and chemical properties, animals, plants, and microorganisms, and to reveal the effects of micro plastics on soil ecosystem and to according to the distribution characteristics of soil micro plastics, degradation, migration and ecological effects, propose pollution control measures. This current review will provide a comprehensive understanding of soil pollution by micro plastic and offer a scientific basis for the formulation of novel management practices that will protect and improve soils, and contribute to the sustainable development of the ecological environment and highlight important areas for future research.


Arkatkar A., Arutchelvi J., Bhaduri S., Uppara P.V., Doble M. (2009): Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. International Biodeterioration and Biodegradation, 63: 106–111. https://doi.org/10.1016/j.ibiod.2008.06.005
Arthur E., Moldrup P., Holmstrup M., Schjønning P., Winding A., Mayer P., de Jonge L.W. (2012): Soil microbial and physical properties and their relations along a steep copper gradient. Agriculture, Ecosystems and Environment, 159: 9–18. https://doi.org/10.1016/j.agee.2012.06.021
Asli S., Neumann P.M. (2009): Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell and Environment, 32: 577–584. https://doi.org/10.1111/j.1365-3040.2009.01952.x
EPRO (2018): Plastics – the Facts 2018. Salisbury, Association of Plastics Manufacturers in Europe.
Bakir A., Rowland S.J., Thompson R.C. (2014): Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuarine, Coastal and Shelf Science, 140: 14–21. https://doi.org/10.1016/j.ecss.2014.01.004
Bandmann V., Müller J.D., Köhler T., Homann U. (2012): Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Letters, 586: 3626–3632. https://doi.org/10.1016/j.febslet.2012.08.008
Bandopadhyay S., Martin-Closas L., Pelacho A.M., DeBruyn J.M. (2018): Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Frontiers in Microbiology, 9: 00819. https://doi.org/10.3389/fmicb.2018.00819
Bandow N., Will V., Wachtendorf V., Simon F.-G. (2017): Contaminant release from aged microplastic. Environmental Chemistry, 14: 394–405. https://doi.org/10.1071/EN17064
Bläsing M., Amelung W. (2018): Plastics in soil: analytical methods and possible sources. Science of The Total Environment, 612: 422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086
Bosker T., Bouwman L.J., Brun N.R., Behrens P., Vijver M.G. (2019): Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226: 774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163
Briassoulis D., Babou E., Hiskakis M., Kyrikou I. (2015): Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environmental Science and Pollution Research International, 22: 2584–2598.  https://doi.org/10.1007/s11356-014-3464-9
Brodhagen M., Goldberger J.R., Hayes D.G., Inglis D.A., Marsh T.L., Miles C. (2017): Policy considerations for limiting unintended residual plastic in agricultural soils. Environmental Science and Policy, 69: 81–84. https://doi.org/10.1016/j.envsci.2016.12.014
Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraub M.N., Zoppini A. (2013): Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58: 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009
Cao D.D., Wang X., Luo X.X., Liu G.C., Zheng H. (2017): Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conference Series: Earth and Environmental Science, 61: 012148. https://doi.org/10.1088/1755-1315/61/1/012148
Cherif H., Ayari F., Ouzari H., Marzorati M., Brusetti L., Jedidi N., Hassen A., Daffonchio D. (2009): Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. European Journal of Soil Biology, 45: 138–145. https://doi.org/10.1016/j.ejsobi.2008.11.003
Cooper D.A., Corcoran P.L. (2010): Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Marine Pollution Bulletin, 60: 650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026
Corcoran E., Nellemann C., Baker E., Bos R., Osborn D., Savelli H. (2010): Sick Water? The central role of wastewater management in sustainable development – a rapid response assessment. Nairobi, United Nations Environment Programme.
De Souza Machado A.A., Kloas W., Zarfl C., Hempel S., Rillig M.C. (2018): Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24: 1405–1416. https://doi.org/10.1111/gcb.14020
De Souza Machado A.A., Lau C.W., Kloas W., Bergmann J., Bachelier J.B., Faltin E., Becker R., Görlich A.S., Rillig M.C. (2019): Microplastics can change soil properties and affect plant performance. Environmental Science and Technology, 53: 6044–6052. https://doi.org/10.1021/acs.est.9b01339
DeForest J.L., Zak D.R., Pregitzer K.S., Burton A.J. (2004): Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry, 36: 965–971. https://doi.org/10.1016/j.soilbio.2004.02.011
Driedger A.G.J., Dürr H.H., Mitchell K., Van Cappellen P. (2015): Plastic debris in the Laurentian Great Lakes: a review. Journal of Great Lakes Research, 41: 9–19. https://doi.org/10.1016/j.jglr.2014.12.020
Dris R., Gasperi J., Saad M., Mirande-Bret C., Tassin B. (2016): Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Marine Pollution Bulletin, 104: 01251430. https://doi.org/10.1016/j.marpolbul.2016.01.006
Dris R., Imhof H., Sanchez W., Gasperi J., Galgani F., Tassin B., Laforsch C. (2015): Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles. Environmental Chemistry, 12: 539–550. https://doi.org/10.1071/EN14172
Duis K., Coors A. (2016): Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28: 2. https://doi.org/10.1186/s12302-015-0069-y
Eckmeier E., Gerlach R., Skjemstad J.O., Ehrmann O., Schmidt M.W.I. (2007): Minor changes in soil organic carbon and charcoal concentrations detected in a temperate deciduous forest a year after an experimental slash-and-burn. Biogeosciences, 4: 377–383.  https://doi.org/10.5194/bg-4-377-2007
Eerkes-Medrano D., Thompson R.C., Aldridge D.C. (2015): Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75: 63–82. https://doi.org/10.1016/j.watres.2015.02.012
Espí E., Salmerón A., Fontecha A., García Y., Real A.I. (2006): Plastic films for agricultural applications. Journal of Plastic Film and Sheeting, 22: 85–102. https://doi.org/10.1177/8756087906064220
Franckx L. (2010): Assessment of the options to improve the management of bio-waste in the European Union. Brussel, European Commission Directorate-General Environment.
Free C.M., Jensen O.P., Mason S.A., Eriksen M., Williamson N.J., Boldgiv B. (2014): High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, 85: 156–163. https://doi.org/10.1016/j.marpolbul.2014.06.001
Fuller S., Gautam A. (2016): A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science and Technology, 50: 5774–5780. https://doi.org/10.1021/acs.est.6b00816
Gao H.H., Yan C.R., Liu Q., Ding W.L., Chen B.Q., Li Z. (2019): Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis. Science of The Total Environment, 651: 484–492. https://doi.org/10.1016/j.scitotenv.2018.09.105
Gaylor M.O., Harvey E., Hale R.C. (2013): Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended soils. Environmental Science and Technology, 47: 13831–13839. https://doi.org/10.1021/es403750a
Geyer R., Jambeck J.R., Law K.L. (2017): Production, use, and fate of all plastics ever made. Science Advances, 3: 1700782.  https://doi.org/10.1126/sciadv.1700782
Girvan M.S., Bullimore J., Pretty J.N., Osborn A.M., Ball A.S. (2003): Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69: 1800–1809. https://doi.org/10.1128/AEM.69.3.1800-1809.2003
Guo X.Y., Wang X.L., Zhou X.Z., Kong X.Z., Tao S., Xing B.S. (2012): Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition. Environmental Science and Technology, 46: 7252–7259. https://doi.org/10.1021/es301386z
Guo J.J., Huang X.P., Xiang L., Wang Y.Z., Li Y.W., Li H., Cai Q.Y., Mo C.H., Wong M.H. (2020): Source, migration and toxicology of microplastics in soil. Environment International, 137: 105263. https://doi.org/10.1016/j.envint.2019.105263
Hall J.E. (1995): Sewage sludge production, treatment and disposal in the European Union. Water and Environment Journal, 9: 335–343.  https://doi.org/10.1111/j.1747-6593.1995.tb00950.x
Hämer J., Gutow L., Köhler A., Saborowski R. (2014): Fate of microplastics in the marine isopod Idotea emarginata. Environmental Science and Technology, 48: 13451–13458. https://doi.org/10.1021/es501385y
Hartmann N.B., Rist S., Bodin J., Jensen L.H.S., Schmidt S.N., Mayer P., Meibom A., Baun A. (2017): Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integrated Environmental Assessment and Management, 13: 488–493. https://doi.org/10.1002/ieam.1904
Hodson M.E., Duffus-Hodson C.A., Clark A., Prendergast-Miller M.T., Thorpe K.L. (2017): Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science and Technology, 51: 4714–4721. https://doi.org/10.1021/acs.est.7b00635
Holmes L.A., Turner A., Thompson R.C. (2012): Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160: 42–48.  https://doi.org/10.1016/j.envpol.2011.08.052
Hopkins D.W., Wheatley R.E., Coakley C.M., Daniell T.J., Mitchell S.M., Newton A.C., Neilson R. (2017): Soil carbon and nitrogen and barley yield responses to repeated additions of compost and slurry. Journal of Agricultural Science, 155: 141–155.  https://doi.org/10.1017/S0021859616000307
Horton A.A., Walton A., Spurgeon D.J., Lahive E., Svendsen C. (2017): Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment, 586: 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190
Huerta Lwanga E., Gertsen H., Gooren H., Peters P., Salánki T., van der Ploeg M., Besseling E., Koelmans A.A., Geissen V. (2017): Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220: 523–531. https://doi.org/10.1016/j.envpol.2016.09.096
Huerta Lwanga E., Gertsen H., Gooren H., Peters P., Salánki T., Van Der Ploeg M., Besseling E., Koelmans A.A., Geissen V. (2016): Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science and Technology, 50: 2685–2691. https://doi.org/10.1021/acs.est.5b05478
Huerta Lwanga E., Mendoza Vega J., Ku Quej V., Chi J. de los A., Sanchez del Cid L., Chi C., Escalona Segura G., Gertsen H., Salánki T., van der Ploeg M., Koelmans A.A., Geissen V. (2017): Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7: 14071. https://doi.org/10.1038/s41598-017-14588-2
Huerta Lwanga E., Thapa B., Yang X., Gertsen H., Salánki T., Geissen V., Garbeva P. (2018): Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration. Science of The Total Environment, 624: 753–757. https://doi.org/10.1016/j.scitotenv.2017.12.144
Hüffer T., Hofmann T. (2016): Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 214: 194–201. https://doi.org/10.1016/j.envpol.2016.04.018
Hüffer T., Metzelder F., Sigmund G., Slawek S., Schmidt T.C., Hofmann T. (2019): Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 657: 242–247. https://doi.org/10.1016/j.scitotenv.2018.12.047
Jiang X., Li M. (2020): Interaction of microplastics and heavy metals: toxicity, mechanisms, and environmental implications. In: He D.F., Luo Y.M. (eds.): Microplastics in Terrestrial Environments. Springer International Publishing. ISBN: 978-3-030-56270-0
Jin X., An T., Gall A.R., Li S., Filley T., Wang J. (2018): Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma, 313: 154–162. https://doi.org/10.1016/j.geoderma.2017.10.036
Judy J.D., Williams M., Gregg A., Oliver D., Kumar A., Kookana R., Kirby J.K. (2019): Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 252: 522–531. https://doi.org/10.1016/j.envpol.2019.05.027
Kim L.H., Kang J., Kayhanian M., Gil K.I., Stenstrom M.K., Zoh K.D. (2006): Characteristics of litter waste in highway storm runoff. Water Science and Technology, 53: 225–234. https://doi.org/10.2166/wst.2006.056
Kim L.H., Kayhanian M., Stenstrom M.K. (2004): Event mean concentration and loading of litter from highways during storms. Science of The Total Environment, 330: 101–113.  https://doi.org/10.1016/j.scitotenv.2004.02.012
Kong X., Jin D., Jin S., Wang Z., Yin H., Xu M., Deng Y. (2018): Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. Journal of Hazardous Materials, 353: 142–150.  https://doi.org/10.1016/j.jhazmat.2018.04.015
Krueger M.C., Harms H., Schlosser D. (2015): Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology, 99: 8857–8874. https://doi.org/10.1007/s00253-015-6879-4
Lambert S., Scherer C., Wagner M. (2017): Ecotoxicity testing of microplastics: considering the heterogeneity of physicochemical properties. Integrated Environmental Assessment and Management, 13: 470–475.  https://doi.org/10.1002/ieam.1901
Lei K., Qiao F., Liu Q., Wei Z., Qi H., Cui S., Yue X., Deng Y., An L. (2017): Microplastics releasing from personal care and cosmetic products in China. Marine Pollution Bulletin, 123: 122–126.  https://doi.org/10.1016/j.marpolbul.2017.09.016
Li J., Zhang K., Zhang H. (2018): Adsorption of antibiotics on microplastics. Environmental Pollution, 237: 460–467.  https://doi.org/10.1016/j.envpol.2018.02.050
Li M., Yu H., Wang Y., Li J., Ma G., Wei X. (2020): QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene. Scientific Reports, 10: 14597. https://doi.org/10.1038/s41598-020-71390-3
Liu H., Yang X., Liu G., Liang C., Xue S., Chen H., Ritsema C.J., Geissen V. (2017): Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185: 907–917. https://doi.org/10.1016/j.chemosphere.2017.07.064
Liu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., He D. (2018): Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242: 855–862.  https://doi.org/10.1016/j.envpol.2018.07.051
Liu M., Preis S., Kornev I., Hu Y., Wei C.H. (2018): Pulsed corona discharge for improving treatability of coking wastewater. Journal of Environmental Sciences, 64: 306–316. https://doi.org/10.1016/j.jes.2017.07.003
Liu F., Liu G., Zhu Z., Wang S., Zhao F. (2019): Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere, 214: 688–694.  https://doi.org/10.1016/j.chemosphere.2018.09.174
Liu S., Shi J., Wang J., Dai Y., Li H., Li J., Liu X., Chen X., Wang Z., Zhang P. (2021): Interactions between microplastics and heavy metals in aquatic environments: a review. Frontiers in Microbiology, 12: 652520. https://doi.org/10.3389/fmicb.2021.652520
Lu L., Wan Z., Luo T., Fu Z., Jin Y. (2018): Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of The Total Environment, 631–632: 449–458.
Lu X.M., Lu P.Z. (2014): Characterization of bacterial communities in sediments receiving various wastewater effluents with high-throughput sequencing analysis. Microbial Ecology, 67: 612–623. https://doi.org/10.1007/s00248-014-0370-0
Ma X., Geiser-Lee J., Deng Y., Kolmakov A. (2010): Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment, 408: 3053–3061.  https://doi.org/10.1016/j.scitotenv.2010.03.031
Maaß S., Daphi D., Lehmann A., Rillig M.C. (2017): Transport of microplastics by two collembolan species. Environmental Pollution, 225: 456–459. https://doi.org/10.1016/j.envpol.2017.03.009
Majewsky M., Bitter H., Eiche E., Horn H. (2016): Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Science of The Total Environment, 568: 507–511. https://doi.org/10.1016/j.scitotenv.2016.06.017
Marschner B., Kalbitz K. (2003): Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113: 211–235. https://doi.org/10.1016/S0016-7061(02)00362-2
Massos A., Turner A. (2017): Cadmium, lead and bromine in beached microplastics. Environmental Pollution, 227: 139–145.  https://doi.org/10.1016/j.envpol.2017.04.034
Mato Y., Isobe T., Takada H., Kanehiro H., Ohtake C., Kaminuma T. (2001): Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science and Technology, 35: 318–324.  https://doi.org/10.1021/es0010498
Mintenig S.M., Int-Veen I., Löder M.G.J., Primpke S., Gerdts G. (2017): Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108: 365–372. https://doi.org/10.1016/j.watres.2016.11.015
Mintenig S.M., Löder M.G.J., Primpke S., Gerdts G. (2019): Low numbers of microplastics detected in drinking water from ground water sources. Science of The Total Environment, 648: 631–635.  https://doi.org/10.1016/j.scitotenv.2018.08.178
Murphy F., Ewins C., Carbonnier F., Quinn B. (2016): Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science and Technology, 50: 5800–5808. https://doi.org/10.1021/acs.est.5b05416
Naeini S.A.R.M., Cook H.F. (2000): Influence of municipal waste compost amendment on soil water and evaporation. Communications in Soil Science and Plant Analysis, 31: 3147–3161. https://doi.org/10.1080/00103620009370657
Naveed M., Herath L., Moldrup P., Arthur E., Nicolaisen M., Norgaard T., Ferré Ty.P.A., de Jonge L.W. (2016): Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103: 44–55. https://doi.org/10.1016/j.apsoil.2016.03.004
Ng E.L., Huerta Lwanga E., Eldridge S.M., Johnston P., Hu H.W., Geissen V., Chen D. (2018): An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627: 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341
Nizzetto L., Futter M., Langaas S. (2016): Are agricultural soils dumps for microplastics of urban origin? Environmental Science and Technology, 50: 10777–10779. https://doi.org/10.1021/acs.est.6b04140
O’Connor D., Pan S., Shen Z., Song Y., Jin Y., Wu W.M., Hou D. (2019): Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 249: 527–534. https://doi.org/10.1016/j.envpol.2019.03.092
Qi Y., Yang X., Pelaez A.M., Huerta Lwanga E., Beriot N., Gertsen H., Garbeva P., Geissen V. (2018): Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of The Total Environment, 645: 1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229
Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., Gardea-Torresdey J.L. (2011): Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59: 3485–3498.  https://doi.org/10.1021/jf104517j
Rillig M.C. (2012): Microplastic in terrestrial ecosystems and the soil? Environmental Science and Technology, 46: 6453–6454. https://doi.org/10.1021/es302011r
Rillig M.C. (2018): Microplastic disguising as soil carbon storage. Environmental Science and Technology, 52: 6079–6080. https://doi.org/10.1021/acs.est.8b02338
Rillig M.C., Bonkowski M. (2018): Microplastic and soil protists: a call for research. Environmental Pollution, 241: 1128–1131.
Rillig M.C., Ingraffia R., De Souza Machado A.A. (2017): Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8: 01805. https://doi.org/10.3389/fpls.2017.01805
Rillig M.C., Muller L.A.H., Lehmann A. (2017a): Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11: 1943–1948. https://doi.org/10.1038/ismej.2017.56
Rillig M.C., Ziersch L., Hempel S. (2017b): Microplastic transport in soil by earthworms. Scientific Reports, 7: 1362. https://doi.org/10.1038/s41598-017-01594-7
Rochman C.M. (2018): Microplastics research-from sink to source. Science, 360: 28–29.  https://doi.org/10.1126/science.aar7734
Rodriguez-Seijo A., Lourenço J., Rocha-Santos T.A.P., da Costa J., Duarte A.C., Vala H., Pereira R. (2017): Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220: 495–503.  https://doi.org/10.1016/j.envpol.2016.09.092
Scheurer M., Bigalke M. (2018): Microplastics in Swiss floodplain soils. Environmental Science and Technology, 52: 3591–3598.  https://doi.org/10.1021/acs.est.7b06003
Seidensticker S., Grathwohl P., Lamprecht J., Zarfl C. (2018): A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics. Environmental Sciences Europe, 30: 30. https://doi.org/10.1186/s12302-018-0155-z
Setälä O., Fleming-Lehtinen V., Lehtiniemi M. (2014): Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185: 77–83. https://doi.org/10.1016/j.envpol.2013.10.013
Shen X.C., Li D.C., Sima X.F., Cheng H.Y., Jiang H. (2018): The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column. Environmental Research, 166: 377–383. https://doi.org/10.1016/j.envres.2018.06.034
Singh A., Kaushal A., Garg S., Chawla N. (2017): Effect of different coloured plastic mulches on growth, yield and quality of drip fertigated bell pepper (Capsicum annum var. grossum). Indian Journal of Horticulture, 74: 292–294. https://doi.org/10.5958/0974-0112.2017.00059.7
Slater R.A., Frederickson J. (2001): Composting municipal waste in the UK: some lessons from Europe. Resources, Conservation and Recycling, 32: 359–374. https://doi.org/10.1016/S0921-3449(01)00071-4
Su L., Xue Y., Li L., Yang D., Kolandhasamy P., Li D., Shi H. (2016): Microplastics in Taihu Lake, China. Environmental Pollution, 216: 711–719. https://doi.org/10.1016/j.envpol.2016.06.036
Sun M., Ye M., Jiao W., Feng Y., Yu P., Liu M., Jiao J., He X., Liu K., Zhao Y., Wu J., Jiang X., Hu F. (2018): Changes in tetracycline partitioning and bacteria/phagecomediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid. Journal of Hazardous Materials, 345: 131–139. https://doi.org/10.1016/j.jhazmat.2017.11.036
Teuten E.L., Rowland S.J., Galloway T.S., Thompson R.C. (2007): Potential for plastics to transport hydrophobic contaminants. Environmental Science and Technology, 41: 7759–7764. https://doi.org/10.1021/es071737s
Teuten E.L., Saquing J.M., Knappe D.R.U., Barlaz M.A., Jonsson S., Björn A., Rowland S.J., Thompson R.C., Galloway T.S., Yamashita R., Ochi D., Watanuki Y., Moore C., Viet P.H., Tana T.S., Prudente M., Boonyatumanond R., Zakaria M.P., Akkhavong K., Ogata Y., Hirai H., Iwasa S., Mizukawa K., Hagino Y., Imamura A., Saha M., Takada H. (2009): Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364: 0284. https://doi.org/10.1098/rstb.2008.0284
Wang F., Shih K.M., Li X.Y. (2015): The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere, 119: 841–847.  https://doi.org/10.1016/j.chemosphere.2014.08.047
Wang H.T., Ding J., Xiong C., Zhu D., Li G., Jia X.Y., Zhu Y.G., Xue X.M. (2019): Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 251: 110–116.  https://doi.org/10.1016/j.envpol.2019.04.054
Willén A., Junestedt C., Rodhe L., Pell M., Jönsson H. (2017): Sewage sludge as fertiliser – environmental assessment of storage and land application options. Water Science and Technology, 75: 1034–1050. https://doi.org/10.2166/wst.2016.584
Wright S.L., Kelly F.J. (2017): Plastic and human health: a micro issue? Environmental Science and Technology, 51: 6634–6647. https://doi.org/10.1021/acs.est.7b00423
Yang J., Cang L., Sun Q., Dong G., Ata-Ul-Karim S.T., Zhou D. (2019): Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environmental Science and Pollution Research, 26: 23027–23036. https://doi.org/10.1007/s11356-019-05643-8
Zhan Z., Wang J., Peng J., Xie Q., Huang Y., Gao Y. (2016): Sorption of 3,3-,4,4-tetrachlorobiphenyl by microplastics: a case study of polypropylene. Marine Pollution Bulletin, 110: 559–563.  https://doi.org/10.1016/j.marpolbul.2016.05.036
Zhang G.S., Liu Y.F. (2018): The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642: 12–20. https://doi.org/10.1016/j.scitotenv.2018.06.004
Zhang S., Yang X., Gertsen H., Peters P., Salánki T., Geissen V. (2018): A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 616–617: 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.10.213
Zhao J., Ran W., Teng J., Liu Y., Liu H., Yin X., Cao R., Wang Q. (2018): Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China. Science of the Total Environment, 640–641: 637–645.  https://doi.org/10.1016/j.scitotenv.2018.05.346
Zhou Q., Zhang H., Zhou Y., Li Y., Xue Y., Fu C., Tu C., Luo Y. (2016): Separation of microplastics from a coastal soil and their surface microscopic features. Kexue Tongbao/Chinese Science Bulletin, 61: 1–8.  https://doi.org/10.1360/N972015-01098
Zhou Q., Zhang H., Fu C., Zhou Y., Dai Z., Li Y., Tu C., Luo Y. (2018): The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 322: 201–208. https://doi.org/10.1016/j.geoderma.2018.02.015
Zhu B.K., Fang Y.M., Zhu D., Christie P., Ke X., Zhu Y.G. (2018): Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environmental Pollution, 239: 408–415.  https://doi.org/10.1016/j.envpol.2018.04.017
Zhu D., Chen Q.L., An X.L., Yang X.R., Christie P., Ke X., Wu L.H., Zhu Y.G. (2018): Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 116: 302–310.  https://doi.org/10.1016/j.soilbio.2017.10.027
Zhu F., Zhu C., Wang C., Gu C. (2019): Occurrence and ecological impacts of microplastics in soil systems: a review. Bulletin of Environmental Contamination and Toxicology, 102: 741–749. https://doi.org/10.1007/s00128-019-02623-z
Ziccardi L.M., Edgington A., Hentz K., Kulacki K.J., Kane Driscoll S. (2016): Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: a state-of-the-science review. Environmental Toxicology and Chemistry, 35: 1667–1676. https://doi.org/10.1002/etc.3461
Zubris K.A.V., Richards B.K. (2005): Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138: 201–211. https://doi.org/10.1016/j.envpol.2005.04.013
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti