Effect of coexisting metal ions on bio-precipitation of Cu2+ phosphate by Rahnella sp. LRP3 and its stability in soil


Li M.T., Liu S.Q., Wang Y.Q., Do H.T., Zhao C.L. (2021): Effect of coexisting metal ions on bio-precipitation of Cu2+ phosphate by Rahnella sp. LRP3 and its stability in soil. Plant Soil Environ., 67: 729–738.


download PDF

The phosphate precipitation of heavy metal induced by microorganisms plays an important role in immobilising heavy metal in soil. However, there is little knowledge about the effect of coexisting metal ions on the induction of Cu phosphate mineral and its stability. In this paper, the Cu phosphate precipitations, coexisting with Pb2+ or Ca2+ induced by strain LRP3, were characterised, and the stabilisation of the induced phosphate precipitates was also studied. The coexistence of Cu with Pb or Ca decreased the removal efficiency of Cu2+ by 17.18% and 9.78%, respectively, indicating the competitive adsorption between cations. Strain LRP3 could induce a new phosphate mineral of CuCa10(PO4)7 when coexisting with Ca and also generate the phosphate minerals of Pb(H2PO4)2 and Cu3(PO4)2 when coexisting with Pb. The Cu-Ca coprecipitate could enhance the stability of Cu in dilute acid solution and soil with or without a plant, whiles the Cu-Pb one showed the opposite effect. Also, the Cu-induced phosphate precipitates were relatively stable and not easy to be absorbed by Pakchoi (Brassica rapa var. chinensis). The results showed that the influence of coexisting metal ions should be considered when phosphate mineralisation technology is used to immobilise heavy metals in the environment.


Abatenh E., Gizaw B., Tsegaye Z., Wassie M. (2017): The role of microorganisms in bioremediation – a review. Open Journal of Environmental Biology, 2: 30–46. https://doi.org/10.17352/ojeb.000007
Adamczyk-Szabela D., Markiewicz J., Wolf W.M. (2015): Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water, Air, and Soil Pollution, 226: 106. https://doi.org/10.1007/s11270-015-2360-3
Ahalya N., Ramachandra T.V., Kanamadi R.D. (2003): Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7: 71–79.
Baldermann A., Landler A., Mittermayr F., Letofsky-Papst I., Steindl F., Galan I., Dietzel M. (2019): Removal of heavy metals (Co, Cr, and Zn) during calcium-aluminium-silicate-hydrate and trioctahedral smectite formation. Journal of Materials Science, 54: 9331–9351. https://doi.org/10.1007/s10853-019-03541-5
Bravin M.N., Le Merrer B., Denaix L., Schneider A., Hinsinger P. (2010): Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant and Soil, 331: 91–104. https://doi.org/10.1007/s11104-009-0235-3
Chen Z., Pan X.H., Chen H., Guan X., Lin Z. (2016): Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from lead-zinc mine tailings. Journal of Hazardous Materials, 301: 531–537. https://doi.org/10.1016/j.jhazmat.2015.09.023
De Souza Costa E.T., Guilherme L.R.G., de Melo É.E.C., Ribeiro B.T., Euzelina dos Santos B.I., da Costa Severiano E., Faquin V., Hale B.A. (2012): Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biological Trace Element Research, 145: 93–100. https://doi.org/10.1007/s12011-011-9164-0
Eom H., Hwang J.-H., Hassan S.H.A., Joo J.H., Hur J.H., Chon K.M., Jeon B.-H., Song Y.-C., Chae K.-J., Oh S.-E. (2019): Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor. Journal of Microbiological Methods, 161: 35–42. https://doi.org/10.1016/j.mimet.2019.04.007
Farrag K., Senesi N., Nigro F., Petrozza A., Palma A., Shaarawi S., Brunetti G. (2012): Growth responses of crop and weed species to heavy metals in pot and field experiments. Environmental Science and Pollution Research, 19: 3636–3644. https://doi.org/10.1007/s11356-012-0951-8
Gao L., Peng K.J., Xia Y., Wang G.P., Niu L., Lian C., Shen Z. (2013): Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids. International Journal of Phytoremediation, 15: 307–319. https://doi.org/10.1080/15226514.2012.702800
Ginocchio R., Rodríguez P.H., Badilla-Ohlbaum R., Allen H.E., Lagos G.E. (2002): Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environmental Toxicology and Chemistry: An International Journal, 21: 1736–1744. https://doi.org/10.1002/etc.5620210828
Han H., Cai H., Wang X.Y., Hu X.M., Chen Z.J., Yao L.G. (2020): Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Ecotoxicology and Environmental Safety, 195: 110375. https://doi.org/10.1016/j.ecoenv.2020.110375
Huang G.Y., Zhou X.P., Guo G.G., Ren C., Rizwan M.S., Islam Md.S., Hu H.Q. (2020): Variations of dissolved organic matter and Cu fractions in rhizosphere soil induced by the root activities of castor bean. Chemosphere, 254: 126800. https://doi.org/10.1016/j.chemosphere.2020.126800
Huang Q.Y., Zhao Z.H., Chen W.L. (2003): Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals. Chemosphere, 52: 571–579. https://doi.org/10.1016/S0045-6535(03)00238-8
Jalali M., Moradi F. (2013): Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environmental Monitoring and Assessment, 185: 8831–8846. https://doi.org/10.1007/s10661-013-3216-1
Javanbakht V., Alavi S.A., Zilouei H. (2014): Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69: 1775–1787. https://doi.org/10.2166/wst.2013.718
Jerden Jr. J.L., Sinha A.K., Zelazny L. (2003): Natural immobilization of uranium by phosphate mineralization in an oxidizing saprolite-soil profile: chemical weathering of the Coles Hill uranium deposit, Virginia. Chemical Geology, 199: 129–157. https://doi.org/10.1016/S0009-2541(03)00080-9
Jiang L.H., Liu X.D., Yin H.Q., Liang Y.L., Liu H.W., Miao B., Peng Q.Q., Meng D.L., Wang S.Q., Yang J.J., Guo Z.W. (2020): The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: a mini review. Ecotoxicology and Environmental Safety, 191: 110009. https://doi.org/10.1016/j.ecoenv.2019.110009
Klas S., Dubowski Y., Lahav O. (2011): Chemical stability and extent of isomorphous substitution in ferrites precipitated under ambient temperatures. Journal of Hazardous Materials, 193: 59–64. https://doi.org/10.1016/j.jhazmat.2011.07.023
Konhauser K., Riding R. (2012): Bacterial biomineralization. In: Knoll A.H., Canfield D.E., Konhauser K.O. (eds.): Fundamentals of Geobiology. New Jersey, Blackwell Publishing, 105–130. ISBN: 9781118280812
Liang X.J., Csetenyi L., Gadd G.M. (2016): Lead bioprecipitation by yeasts utilizing organic phosphorus substrates. Geomicrobiology Journal, 33: 294–307. https://doi.org/10.1080/01490451.2015.1051639
Lin W.T., Huang Z., Li X.Z., Liu M.H., Cheng Y.J. (2016): Bio-remediation of acephate-Pb(II) compound contaminants by Bacillus subtilis FZUL-33. Journal of Environmental Sciences, 45: 94–99. https://doi.org/10.1016/j.jes.2015.12.010
Maity J.P., Chen G.-S., Huang Y.-H., Sun A.-C., Chen C.-Y. (2019): Ecofriendly heavy metal stabilization: microbial induced mineral precipitation (MIMP) and biomineralization for heavy metals within the contaminated soil by indigenous bacteria. Geomicrobiology Journal, 36: 612–623. https://doi.org/10.1080/01490451.2019.1597216
Martínez-Alcalá I., Walker D.J., Bernal M.P. (2010): Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotoxicology and Environmental Safety, 73: 595–602. https://doi.org/10.1016/j.ecoenv.2009.12.009
Mench M., Vangronsveld J., Beckx C., Ruttens A. (2006): Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environmental Pollution, 144: 51–61. https://doi.org/10.1016/j.envpol.2006.01.011
Mignardi S., Corami A., Ferrini V. (2012): Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86: 354–360. https://doi.org/10.1016/j.chemosphere.2011.09.050
Nadgórska-Socha A., Kafel A., Kandziora-Ciupa M., Gospodarek J., Zawisza-Raszka A. (2013): Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environmental Science and Pollution Research, 20: 1124–1134. https://doi.org/10.1007/s11356-012-1191-7
Naik M.M., Khanolkar D., Dubey S.K. (2013): Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb2+ as lead phosphate. Letters in Applied Microbiology, 56: 99–104. https://doi.org/10.1111/lam.12026
Nazarian H., Amouzgar D., Sedghianzadeh H. (2016): Effects of different concentrations of cadmium on growth and morphological changes in basil (Ocimum basilicum L.). Pakistan Journal of Botany, 48: 945–952.
Nie X.Q., Dong F.Q., Liu M.X., He H.C., Sun S.Y., Bian L., Yang G., Zhang W., Qin Y.L., Huang R., Zheng L., Wei R., Lei W. (2017): Microbially mediated stable uranium phosphate nano-biominerals. Journal of Nanoscience and Nanotechnology, 17: 6771–6780. https://doi.org/10.1166/jnn.2017.14463
Nouri J., Khorasani N., Lorestani B., Karami M., Hassani A.H., Yousefi N. (2009): Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59: 315–323. https://doi.org/10.1007/s12665-009-0028-2
Nzihou A., Sharrock P. (2010): Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites. Waste and Biomass Valorization, 1: 163–174. https://doi.org/10.1007/s12649-009-9006-x
Olayinka A., Babalola G.O. (2001): Effects of copper sulphate application on microbial numbers and respiration, nitrifier and urease activities, and nitrogen and phosphorus mineralization in an alfisol. Biological Agriculture and Horticulture, 19: 1–8. https://doi.org/10.1080/01448765.2001.9754904
Qian C.X., Zhan Q.W. (2016): Bioremediation of heavy metal ions by phosphate-mineralization bacteria and its mechanism. Journal of the Chinese Chemical Society, 63: 635–639. https://doi.org/10.1002/jccs.201600002
Ren J., Zhang Z., Wang M., Guo G., Du P., Li F. (2018): Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium. Frontiers of Environmental Science and Engineering, 12: 10. https://doi.org/10.1007/s11783-018-1006-2
Rieuwerts J.S., Thornton I., Farago M.E., Ashmore M.R. (1998): Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10: 61–75. https://doi.org/10.3184/095422998782775835
Ruby M.V., Davis A., Nicholson A. (1994): In situ formation of lead phosphates in soils as a method to immobilize lead. Environmental Science and Technology, 28: 646–654. https://doi.org/10.1021/es00053a018
Sag Y., Kutsal T. (2001): Recent trends in the biosorption of heavy metals: a review. Biotechnology and Bioprocess Engineering, 6: 376. https://doi.org/10.1007/BF02932318
Simon F.-G., Biermann V. (2007): Groundwater remediation using permeable reactive barriers. Land Contamination and Reclamation, 15: 31–39. https://doi.org/10.2462/09670513.787
Sowmya S., Rekha P.D., Arun A.B. (2014): Uranium(VI) bioprecipitation mediated by a phosphate solubilizing Acinetobacter sp. YU-SS-SB-29 isolated from a high natural background radiation site. International Biodeterioration and Biodegradation, 94: 134–140. https://doi.org/10.1016/j.ibiod.2014.07.009
Tu H., Lan T., Yuan G.Y., Zhao C.S., Liu J., Li F.Z., Yang J.J., Liao J.L., Yang Y.Y., Wang D.Q., Liu N. (2019): The influence of humic substances on uranium biomineralization induced by Bacillus sp. dwc-2. Journal of Environmental Radioactivity, 197: 23–29. https://doi.org/10.1016/j.jenvrad.2018.11.010
Wang A.S., Angle J.S., Chaney R.L., Delorme T.A., Reeves R.D. (2006): Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281: 325–337. https://doi.org/10.1007/s11104-005-4642-9
Wei Y.L., Chen Z., Song H., Zhang J., Lin Z., Dang Z., Deng H. (2019): The immobilization mechanism of U(VI) induced by Bacillus thuringiensis 016 and the effects of coexisting ions. Biochemical Engineering Journal, 144: 57–63. https://doi.org/10.1016/j.bej.2019.01.013
Zhao X.M., Do H.T., Zhou Y., Li Z., Zhang X.F., Zhao S.J., Li M.T., Wu D. (2019): Rahnella sp. LRP3 induces phosphate precipitation of Cu (II) and its role in copper-contaminated soil remediation. Journal of Hazardous Materials, 368: 133–140. https://doi.org/10.1016/j.jhazmat.2019.01.029
Zhao Z.J., Zhao C.L., Do H.H., Li M.T., Wu D., Chen Y.H., Zhang F. (2020): Brevibacillus laterosporus ZN5 induces different carbonate precipitations of lead in ammonification and nitrate assimilation processes. Geomicrobiology Journal, 37: 764–773. https://doi.org/10.1080/01490451.2020.1774687
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti