A microbial biomass and respiration of soil, peat and decomposing plant litter in a raised mire

https://doi.org/10.17221/311/2015-PSECitation:Hall S., Hopkins D.W. (2015): A microbial biomass and respiration of soil, peat and decomposing plant litter in a raised mire. Plant Soil Environ., 61: 405-409.
download PDF

We have compared microbial biomass and respiration rates in soils and decomposition of peat materials from the different components of a raised mire system. The microbial biomass in the lagg fen was not greater than that of the mineral soil or the mire expanse, but the respiration rate of the decomposer organisms in the lagg fen exceeded that of either the mire expanse or surrounding mineral soils. The respiration rate of microorganisms in litter recovered from litter bags in the lagg fen was greater than that in the mire expanse, and the microbial biomass of the litter was greater for the lagg fen than for either the mineral soil or the mire expanse. Further, the litter from minerotrophic plants decomposed faster than the ombrotrophic species.

Anderson J.P.E., Domsch K.H. (1978): A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215-221  https://doi.org/10.1016/0038-0717(78)90099-8
Bragazza L., Siffi C., Iacumin P., Gerdol R. (2007): Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biology and Biochemistry, 39, 257-267  https://doi.org/10.1016/j.soilbio.2006.07.014
Chivers M. R., Turetsky M. R., Waddington J. M., Harden J. W., McGuire A. D. (2009): Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen. Ecosystems, 12, 1329-1342  https://doi.org/10.1007/s10021-009-9292-y
Elliott David R., Caporn Simon J. M., Nwaishi Felix, Nilsson R. Henrik, Sen Robin, Singer Andrew C (2015): Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation. PLOS ONE, 10, e0124726-  https://doi.org/10.1371/journal.pone.0124726
Hopkins D. W., Shiel R. S. (1996): Size and activity of soil microbial communities in long-term experimental grassland plots treated with manure and inorganic fertilizers. Biology and Fertility of Soils, 22, 66-70  https://doi.org/10.1007/BF00384434
HOPKINS D. W., WAITE I. S., McNICOL J. W., POULTON P. R., MACDONALD A. J., O'DONNELL A. G. (2009): Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Global Change Biology, 15, 1739-1754  https://doi.org/10.1111/j.1365-2486.2008.01809.x
INGRAM H. A. P. (1978): SOIL LAYERS IN MIRES: FUNCTION AND TERMINOLOGY. Journal of Soil Science, 29, 224-227  https://doi.org/10.1111/j.1365-2389.1978.tb02053.x
Ingram H. A. P. (1982): Size and shape in raised mire ecosystems: a geophysical model. Nature, 297, 300-303  https://doi.org/10.1038/297300a0
Kivinen E., Pakarinen P. (1981): Geographical Distribution of Peat Resources and Major Peatland Complex Types in the World. Helsinki, Annales Academiae Scientiarum Fennicae A III, 132–160.
Matthews Elaine, Fung Inez (1987): Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1, 61-86  https://doi.org/10.1029/GB001i001p00061
Straková P., Niemi R. M., Freeman C., Peltoniemi K., Toberman H., Heiskanen I., Fritze H., Laiho R. (2011): Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences, 8, 2741-2755  https://doi.org/10.5194/bg-8-2741-2011
Wang Meng, Moore Tim R., Talbot Julie, Riley John L. (2015): The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles, 29, 113-121  https://doi.org/10.1002/2014GB005000
Ward Susan E., Orwin Kate H., Ostle Nicholas J., Briones Maria J. I., Thomson Bruce C., Griffiths Robert I., Oakley Simon, Quirk Helen, Bardgett Richard D. (2015): Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology, 96, 113-123  https://doi.org/10.1890/14-0292.1
Wheatley R.E., Greaves M.P., Inkson R.H.E. (1976): The aerobic bacterial flora of a raised bog. Soil Biology and Biochemistry, 8, 453-460  https://doi.org/10.1016/0038-0717(76)90085-7
download PDF

© 2020 Czech Academy of Agricultural Sciences