Four soil phosphorus (P) tests evaluated by plant P uptake and P balancing in the Ultuna long-term field experiment K., Santner J., Parvage M.M., Gerzabek M.H., Zehetner F., Kirchmann H. (2018): Four soil phosphorus (P) tests evaluated by plant P uptake and P balancing in the Ultuna long-term field experiment. Plant Soil Environ., 64: 441-447.
download PDF

Soil phosphorus (P) availability was assessed with four different soil P tests on seven soils of the Ultuna long-term field experiment (Sweden). These four soil P tests were (1) P-H2O (water extractable P); (2) P-H2OC10 (water extractable P upon 10 consecutive extractions); (3) P-AL (ammonium lactate extractable P) and (4) P-CDGT (P desorbable using diffusive gradients in thin films). The suitability of these soil P tests to predict P availability was assessed by correlation with plant P uptake (mean of preceding 11 years) and soil P balancing (input vs. output on plot level for a period of 54 years). The ability to predict these parameters was in the order P-H2OC10 > P-CDGT > P-H2O > P-AL. Thus, methods considering the P-resupply from the soil solid phase to soil solution performed clearly better than equilibrium-based extractions. Our findings suggest that the P-AL test, commonly used for P-fertilizer recommendations in Sweden, could not predict plant P uptake and the soil P balance in a satisfying way in the analysed soils.

Amer F., Bouldin D. R., Black C. A., Duke F. R. (1955): Characterization of soil phosphorus by anion exchange resin adsorption and P32-equilibration. Plant and Soil, 6, 391-408
Egnér H., Riehm H., Domingo W. (1960): Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungliga Lantbrukshögskolans Annaler, 26: 199–215.
Frossard Emmanuel, Demaria Paolo, Sinaj Sokrat, Schärer Michael (2014): A flow-through reactor to assess potential phosphate release from agricultural soils. Geoderma, 219-220, 125-135
Houba V. J. G., Novozamsky I., van Dijk D. (2008): Certification of an air‐dry soil for pH and extractable nutrients using one hundredth molar calcium chloride. Communications in Soil Science and Plant Analysis, 29, 1083-1090
Indiati R., Sharpley A. N. (2008): Release of soil phosphate by sequential extractions as a function of soil properties and added phosphorus. Communications in Soil Science and Plant Analysis, 27, 2147-2157
Jordan-Meille L., Rubaek G. H., Ehlert P. A. I., Genot V., Hofman G., Goulding K., Recknagel J., Provolo G., Barraclough P. (2012): An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil Use and Management, 28, 419-435
Kätterer Thomas, Bolinder Martin Anders, Andrén Olof, Kirchmann Holger, Menichetti Lorenzo (2011): Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment, 141, 184-192
Kirchmann H., Persson J., Carlgren K. (1994): The Ultuna long-term soil organic matter experiment, 1956–1991. Uppsala, Swedish University of Agricultural Sciences, Department of Soil Sciences, Reports and Dissertations 17.
Kirchmann H., Pichlmayer F., Gerzabek M. H. (1996): Sulfur Balances and Sulfur-34 Abundance in a Long-Term Fertilizer Experiment. Soil Science Society of America Journal, 60, 174-
Kulhánek M., Balík J., Černý J., Nedvěd V., Kotková B. (2008): The influence of different intensities of phosphorus fertilizing on available phosphorus contents in soils and uptake by plants. Plant, Soil and Environment, 53, 382-387
Lair Georg J., Zehetner Franz, Khan Zakir H., Gerzabek Martin H. (2009): Phosphorus sorption–desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 149, 39-44
Mehlich A. (2008): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416
Menichetti Lorenzo, Ekblad Alf, Kätterer Thomas (2015): Contribution of roots and amendments to soil carbon accumulation within the soil profile in a long-term field experiment in Sweden. Agriculture, Ecosystems & Environment, 200, 79-87
Menzies Neal W., Kusumo Bambang, Moody Philip W. (2005): Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique. Plant and Soil, 269, 1-9
Murphy J., Riley J.P. (1962): A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36
Nawara S., Van Dael T., Merckx R., Amery F., Elsen A., Odeurs W., Vandendriessche H., Mcgrath S., Roisin C., Jouany C., Pellerin S., Denoroy P., Eichler-Löbermann B., Börjesson G., Goos P., Akkermans W., Smolders E. (2017): A comparison of soil tests for available phosphorus in long-term field experiments in Europe. European Journal of Soil Science, 68, 873-885
Oenema Oene, Kros Hans, de Vries Wim (2003): Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. European Journal of Agronomy, 20, 3-16
Olsen S.R., Cole C., Watanabe F.S., Dean L. (1954): Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington, United States Department of Agriculture, Circular 939, 1–19.
Otabbong E., Persson J., Iakimenko O., Sadovnikova L. (1997): The Ultuna long-term soil organic matter experiment. II. Phosphorus status and distribution in soils. Plant and Soil, 195: 17–23.
R Development Core Team (2010): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing.
Rhoades J.D. (1996): Salinity: Electrical conductivity and total dissolved solids. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds.): Methods of Soil Analysis. Part 3 – Chemical Methods, 417–435.
Santner Jakob, Prohaska Thomas, Luo Jun, Zhang Hao (2010): Ferrihydrite Containing Gel for Chemical Imaging of Labile Phosphate Species in Sediments and Soils Using Diffusive Gradients in Thin Films. Analytical Chemistry, 82, 7668-7674
Schwertmann U. (1964): Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 105, 194-202
Sharpley A. N., Ahuja L. R., Yamamoto M., Menzel R. G. (1981): The Kinetics of Phosphorus Desorption from Soil1. Soil Science Society of America Journal, 45, 493-
van der Paauw F. (1971): An effective water extraction method for the determination of plant-available soil phosphorus. Plant and Soil, 34, 467-481
van der Zee S. E. A. T. M., Fokkink L. G. J., van Riemsdijk W. H. (1987): A New Technique for Assessment of Reversibly Adsorbed Phosphate1. Soil Science Society of America Journal, 51, 599-
Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2016): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61, 86-96
Yli-Halla M., Schick J., Kratz S., Schnug E. (2016): Determination of plant available P in soil. In: Schnug E., De Kok L.J. (eds.): Phosphorus in Agriculture: 100% Zero. Dordrecht, Springer, 63–93.
Franz Zehetner, Rosemarie Wuenscher, Robert Peticzka, Hans Unterfrauner (2018): Correlation of extractable soil phosphorus (P) with plant P uptake: 14 extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 64, 192-201
Zhang Hao., Davison William. (2002): Performance Characteristics of Diffusion Gradients in Thin Films for the in Situ Measurement of Trace Metals in Aqueous Solution. Analytical Chemistry, 67, 3391-3400
Zhang Hao, Davison William, Gadi Ranu, Kobayashi Takahiro (1998): In situ measurement of dissolved phosphorus in natural waters using DGT. Analytica Chimica Acta, 370, 29-38
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti