Effect of biochar application on the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard

https://doi.org/10.17221/318/2017-PSECitation:Pavlíková D., Zemanova V., Břendová K., Kubátová P., Tlustoš P. (2017): Effect of biochar application on the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant Soil Environ., 63: 322-327.
download PDF
The objective of this study was to assess the effect of biochar on growth and metabolism of spinach (Spinacia oleracea L.) and mustard (Sinapis alba L.) planted in crop rotation: spinach (spring)-mustard-spinach (autumn). The impact of biochar soil application (5% per mass of soil) on the availability of Ca, Fe, K, Mg, Na and P to plants as well as the content of free proline and total amino acids contents were evaluated at degraded Chernozem soil. The results showed that biochar soil addition significantly increased spinach growth by 102% and 353% in spring and autumn, respectively. Biochar limited plant content of Ca, Mg and Na, however K content increased in all plants. Inconsistent effect was determined for Fe and P content in plants biomass. Total content of free amino acids was higher in plants harvested at amended treatments, except autumn spinach. Biochar increased proline content in all plants in comparison to control. The highest increase was obtained in mustard – by 186%. The results showed a more sensitive reaction of mustard to biochar application than spinach.
References:
Atkinson C.J., Fitzgerald J.D., Hipps N.A. (2010): Potential mecha-
 
nisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337: 1–18.
 
Brantley K. E., Savin M. C., Brye K. R., Longer D. E., Goss Michael (2016): Nutrient availability and corn growth in a poultry litter biochar-amended loam soil in a greenhouse experiment. Soil Use and Management, 32, 279-288  https://doi.org/10.1111/sum.12296
 
Brendova Katerina, Tlustoš P., Száková J. (): Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil. Plant, Soil and Environment, 61, 303-308  https://doi.org/10.17221/181/2015-PSE
 
Břendová Kateřina, Zemanová Veronika, Pavlíková Daniela, Tlustoš Pavel (2016): Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants. Journal of Environmental Management, 181, 637-645  https://doi.org/10.1016/j.jenvman.2016.06.042
 
Chintala Rajesh, Schumacher Thomas E., McDonald Louis M., Clay David E., Malo Douglas D., Papiernik Sharon K., Clay Sharon A., Julson James L. (2014): Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures. CLEAN - Soil, Air, Water, 42, 626-634  https://doi.org/10.1002/clen.201300089
 
Evangelou Michael W.H., Brem Anette, Ugolini Fabio, Abiven Samuel, Schulin Rainer (2014): Soil application of biochar produced from biomass grown on trace element contaminated land. Journal of Environmental Management, 146, 100-106  https://doi.org/10.1016/j.jenvman.2014.07.046
 
Foyer C. H., Parry M., Noctor G. (2003): Markers and signals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany, 54, 585-593  https://doi.org/10.1093/jxb/erg053
 
Gao S., Hoffman-Krull K., Bidwell A.L., DeLuca T.H. (2016): Locally produced wood biochar increases nutrient retention and availability in agricultural soils of the San Juan Islands, USA. Agriculture, Ecosystems & Environment, 233, 43-54  https://doi.org/10.1016/j.agee.2016.08.028
 
Gonzaga Maria Isidoria Silva, Mackowiak Cheryl L., Comerford Nicholas Brian, Moline Ederlon Flávio da Veiga, Shirley Jennifer P., Guimaraes Danielle Vieira (2017): Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil and Tillage Research, 165, 59-65  https://doi.org/10.1016/j.still.2016.07.009
 
Jogaiah Sudisha, Govind Sharathchandra Ramsandra, Tran Lam-Son Phan (2013): Systems biology-based approaches toward understanding drought tolerance in food crops. Critical Reviews in Biotechnology, 33, 23-39  https://doi.org/10.3109/07388551.2012.659174
 
Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H., Murphy D.V. (2012): Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 45, 113-124  https://doi.org/10.1016/j.soilbio.2011.10.012
 
Kammann Claudia Irene, Linsel Sebastian, Gößling Johannes W., Koyro Hans-Werner (2011): Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and Soil, 345, 195-210  https://doi.org/10.1007/s11104-011-0771-5
 
Kim Hyuck-Soo, Kim Kwon-Rae, Yang Jae E., Ok Yong Sik, Owens Gary, Nehls Thomas, Wessolek Gerd, Kim Kye-Hoon (2016): Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153-159  https://doi.org/10.1016/j.chemosphere.2015.06.041
 
Kraska P., Oleszczuk P., Andruszczak S., Kwiecińska-Poppe E., Różyło K., Pałys E., Gierasimiuk P., Michałojć Z. (2016): Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil  . Plant, Soil and Environment, 62, 483-489  https://doi.org/10.17221/94/2016-PSE
 
Mukherjee A., Lal R. (2014): The biochar dilemma. Soil Research, 52, 217-  https://doi.org/10.1071/SR13359
 
Mukherjee Atanu, Zimmerman Andrew R. (2013): Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193-194, 122-130  https://doi.org/10.1016/j.geoderma.2012.10.002
 
Nikiforova V. J., Bielecka M., Gakière B., Krueger S., Rinder J., Kempa S., Morcuende R., Scheible W.-R., Hesse H., Hoefgen R. (2006): Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids, 30, 173-183  https://doi.org/10.1007/s00726-005-0251-4
 
Novak J. M., Ippolito J. A., Lentz R. D., Spokas K. A., Bolster C. H., Sistani K., Trippe K. M., Phillips C. L., Johnson M. G. (2016): Soil Health, Crop Productivity, Microbial Transport, and Mine Spoil Response to Biochars. BioEnergy Research, 9, 454-464  https://doi.org/10.1007/s12155-016-9720-8
 
Ohno Tsutomu, Grunes D. L. (1985): Potassium-Magnesium Interactions Affecting Nutrient Uptake by Wheat Forage1. Soil Science Society of America Journal, 49, 685-  https://doi.org/10.2136/sssaj1985.03615995004900030032x
 
Pavlíková Daniela, Zemanová Veronika, Procházková Dagmar, Pavlík Milan, Száková Jiřina, Wilhelmová Naďa (2014): The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicology and Environmental Safety, 100, 166-170  https://doi.org/10.1016/j.ecoenv.2013.10.028
 
Peng Feng, He Pi-Wen, Luo Yin, Lu Xiang, Liang Ying, Fu Jie (2012): Adsorption of Phosphate by Biomass Char Deriving from Fast Pyrolysis of Biomass Waste. CLEAN - Soil, Air, Water, 40, 493-498  https://doi.org/10.1002/clen.201100469
 
Prapagdee Songkrit, Tawinteung Nukoon (2017): Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L.. Environmental Science and Pollution Research, 24, 9460-9467  https://doi.org/10.1007/s11356-017-8633-1
 
Rizwan Muhammad, Ali Shafaqat, Qayyum Muhammad Farooq, Ibrahim Muhammad, Zia-ur-Rehman Muhammad, Abbas Tahir, Ok Yong Sik (2016): Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23, 2230-2248  https://doi.org/10.1007/s11356-015-5697-7
 
Schimmelpfennig S., Kammann C., Moser G., Grünhage L., Müller C. (2015): Changes in macro- and micronutrient contents of grasses and forbs following Miscanthus x giganteus feedstock, hydrochar and biochar application to temperate grassland. Grass and Forage Science, 70, 582-599  https://doi.org/10.1111/gfs.12158
 
Singh B.K. (1999): Plant Amino Acids: Biochemistry and Biotechnology. New York, Marcel Dekker, 227–248.
 
Sorrenti Giovambattista, Ventura Maurizio, Toselli Moreno (2016): Effect of biochar on nutrient retention and nectarine tree performance: A three-year field trial. Journal of Plant Nutrition and Soil Science, 179, 336-346  https://doi.org/10.1002/jpln.201500497
 
Street R., Száková J., Drábek O., Mládková L. (2006): The status of micronutrients (Cu, Fe, Mn, Zn) in tea and Te infusions in selected samples imported to the Czech Republic. Czech Journal of Food Science, 24: 62–71.
 
Szabados László, Savouré Arnould (2010): Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89-97  https://doi.org/10.1016/j.tplants.2009.11.009
 
Waqas Muhammad, Kim Yoon-Ha, Khan Abdul Latif, Shahzad Raheem, Asaf Sajjad, Hamayun Muhammad, Kang Sang-Mo, Khan Muhammad Aaqil, Lee In-Jung (2017): Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. Journal of Zhejiang University-SCIENCE B, 18, 109-124  https://doi.org/10.1631/jzus.B1500262
 
Weckopp S.C., Kopriva S. (2015): Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis? Frontiers in Plant Science, 5: 773.
 
Woldetsadik Desta, Drechsel Pay, Keraita Bernard, Marschner Bernd, Itanna Fisseha, Gebrekidan Heluf (2016): Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. SpringerPlus, 5, -  https://doi.org/10.1186/s40064-016-2019-6
 
Yao Ying, Gao Bin, Chen Jianjun, Zhang Ming, Inyang Mandu, Li Yuncong, Alva Ashok, Yang Liuyan (2013): Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresource Technology, 138, 8-13  https://doi.org/10.1016/j.biortech.2013.03.057
 
Younis Uzma, Qayyum Muhammad Farooq, Shah M. Hasnain Raza, Danish Subhan, Shahzad Ahmad Naeem, Malik Saeed Ahmad, Mahmood Seema (2015): Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar-amended sewage-irrigated contaminated soil. Journal of Plant Nutrition and Soil Science, 178, 209-217  https://doi.org/10.1002/jpln.201400325
 
Zemanová V., Pavlík M., Pavlíková D., Tlustoš P. (2013): The changes of contents of selected free amino acids associated with cadmium stress in Noccaea caerulescens and Arabidopsis halleri. Plant, Soil and Environment, 59: 417–422.
 
ZHANG Zhen-yu, MENG Jun, DANG Shu, CHEN Wen-fu (2014): Effect of Biochar on Relieving Cadmium Stress and Reducing Accumulation in Super japonica Rice. Journal of Integrative Agriculture, 13, 547-553  https://doi.org/10.1016/S2095-3119(13)60711-X
 
Zhang H.Z., Chen C.R., Gray E.M., Boyd S.E., Yang H., Zhang D.K. (2016a): Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 276: 1–6.
 
Zhang J.X., Zhang Z.F., Shen G.M., Wang R., Gao L., Kong F.Y., Zhang J.G. (2016b): Growth performance, nutrient absorption of tobacco and soil fertility after straw biochar application. International Journal of Agriculture and Biology, 18: 983‒989.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti