Biosynthesis of waxy starch – a reviewŠárka E., Dvořáček V. (2017): Biosynthesis of waxy starch – a review. Plant Soil Environ., 63: 335-341.
download PDF
Starch comprises nearly linear amylose and branched amylopectin, whilst waxy starches are a special form, containing almost exclusively amylopectin. Modern techniques in plant breeding together with new data from starch biosynthesis research have enabled new food and non-food uses of waxy starches. This paper describes the basic ways of glucose conversion to waxy starch in plants. The recent evidence of ADP-Glc accumulation in cytosol of photosynthetically competent cells proposes a more complex pathway of starch biosynthesis based on a tight interconnection of sucrose and starch metabolic pathways. Also many studies indicate the existence of different pathways for the sucrose-starch conversion process in heterotrophic organs of dicotyledonous and monocotyledonous plants. At least six classes of starch synthases (SS) have been recognised in plants including soluble SS1, SS2, SS3, SS4, SS5, and granule bound SS (GBSS), required for the synthesis of short and long chains of amylopectin, till now. As to amylose (not-present in waxy starches), GBSS is the only starch synthase isoform encoded by the waxy genes situated at independent loci.
Ahuja Geetika, Jaiswal Sarita, Hucl Pierre, Chibbar Ravindra N. (2014): Wheat genome specific granule-bound starch synthase I differentially influence grain starch synthesis. Carbohydrate Polymers, 114, 87-94
Bahaji Abdellatif, Li Jun, Sánchez-López Ángela María, Baroja-Fernández Edurne, Muñoz Francisco José, Ovecka Miroslav, Almagro Goizeder, Montero Manuel, Ezquer Ignacio, Etxeberria Ed, Pozueta-Romero Javier (2014): Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnology Advances, 32, 87-106
Biselli Chiara, Cavalluzzo Daniela, Perrini Rosaria, Gianinetti Alberto, Bagnaresi Paolo, Urso Simona, Orasen Gabriele, Desiderio Francesca, Lupotto Elisabetta, Cattivelli Luigi, Valè Giampiero (2014): Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. Rice, 7, 1-
Bowsher C. G., Scrase-Field E. F. A. L., Esposito S., Emes M. J., Tetlow I. J. (2007): Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. Journal of Experimental Botany, 58, 1321-1332
Ceballos Hernán, Sánchez Teresa, Morante Nelson, Fregene Martin, Dufour Dominique, Smith Alison M., Denyer Kay, Pérez Juan Carlos, Calle Fernando, Mestres Christian (2007): Discovery of an Amylose-free Starch Mutant in Cassava ( Manihot esculenta Crantz). Journal of Agricultural and Food Chemistry, 55, 7469-7476
Chao S., Sharp P.J., Worland A.J., Warham E.J., Koebner R.M., Gale M.D. (1989): RFLP-based genetic maps of wheat homeologous group 7 chromosomes. Theoretical and Applied Genetics, 78: 495−504.
Chen Guanxing, Zhu Jiantang, Zhou Jianwen, Subburaj Saminathan, Zhang Ming, Han Caixia, Hao Pengchao, Li Xiaohui, Yan Yueming (2014): Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina. BMC Plant Biology, 14, -
Denyer K., Waite D., Motawia S., Møller B.L., Smith A.M. (1999): Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemical Journal, 340 (Pt 1): 183–191.
Denyer K.a.y., Johnson Philip, Zeeman Samuel, Smith Alison M. (2001): The control of amylose synthesis. Journal of Plant Physiology, 158, 479-487
Geigenberger P. (2011): Regulation of Starch Biosynthesis in Response to a Fluctuating Environment. PLANT PHYSIOLOGY, 155, 1566-1577
GEIGENBERGER P., STITT M., FERNIE A. R. (2004): Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant, Cell and Environment, 27, 655-673
Graybosch R. A., Baenziger P. S., Santra D. K., Regassa T., Jin Y., Kolmer J., Wegulo S., Bai Guihua, St. Amand Paul, Chen Xianming, Seabourn B., Dowell F., Bowden R., Marshall D.M. (2014): Registration of ‘Mattern’ Waxy (Amylose-free) Winter Wheat. Journal of Plant Registrations, 8, 43-
Grimaud Florent, Rogniaux Hélène, James Martha G., Myers Alan M., Planchot Véronique (2008): Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. Journal of Experimental Botany, 59, 3395-3406
Hovenkamp-Hermelink J. H. M., Jacobsen E., Ponstein A. S., Visser R. G. F., Vos-Scheperkeuter G. H., Bijmolt E. W., de Vries J. N., Witholt B., Feenstra W. J. (1987): Isolation of an amylose-free starch mutant of the potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 75, 217-221
Hung Pham Van, Maeda Tomoko, Morita Naofumi (2007): Study on Physicochemical Characteristics of Waxy and High-amylose Wheat Starches in Comparison with Normal Wheat Starch. Starch - Stärke, 59, 125-131
Kammerer B. (): Molecular Characterization of a Carbon Transporter in Plastids from Heterotrophic Tissues: The Glucose 6-Phosphate/Phosphate Antiporter. THE PLANT CELL ONLINE, 10, 105-118
Kirchberger Simon, Leroch Michaela, Huynen Martijn A., Wahl Markus, Neuhaus H. Ekkehard, Tjaden Joachim (2007): Molecular and Biochemical Analysis of the Plastidic ADP-glucose Transporter (ZmBT1) from Zea mays. Journal of Biological Chemistry, 282, 22481-22491
Liu Hanmei, Yu Guiling, Wei Bin, Wang Yongbin, Zhang Junjie, Hu Yufeng, Liu Yinghong, Yu Guowu, Zhang Huaiyu, Huang Yubi (2015): Identification and Phylogenetic Analysis of a Novel Starch Synthase in Maize. Frontiers in Plant Science, 6, -
Murray Brent S., Phisarnchananan Nataricha (2014): The effect of nanoparticles on the phase separation of waxy corn starch+locust bean gum or guar gum. Food Hydrocolloids, 42, 92-99
Nakamura Toshiki, Yamamori Makoto, Hirano Hisashi, Hidaka Soh, Nagamine Tukasa (1995): Production of waxy (amylose-free) wheats. MGG Molecular & General Genetics, 248, 253-259
Ortiz-Marchena M. I., Albi T., Lucas-Reina E., Said F. E., Romero-Campero F. J., Cano B., Ruiz M. T., Romero J. M., Valverde F. (2014): Photoperiodic Control of Carbon Distribution during the Floral Transition in Arabidopsis. The Plant Cell, 26, 565-584
Ovecka Miroslav, Bahaji Abdellatif, Muñoz Francisco José, Almagro Goizeder, Ezquer Ignacio, Baroja-Fernández Edurne, Li Jun, Pozueta-Romero Javier (2014): A sensitive method for confocal fluorescence microscopic visualization of starch granules in iodine stained samples. Plant Signaling & Behavior, 7, 1146-1150
Pusadee T., Oupkaew P., Rerkasem B., Jamjod S., Schaal B.A. (2014): Natural and human-mediated selection in a landrace of Thai rice ( Oryza sativa ). Annals of Applied Biology, 165, 280-292
Ral J.-P. (2006): Circadian Clock Regulation of Starch Metabolism Establishes GBSSI as a Major Contributor to Amylopectin Synthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY, 142, 305-317
Roldán Isaac, Wattebled Fabrice, Mercedes Lucas M., Delvallé David, Planchot Veronique, Jiménez Sebastian, Pérez Ricardo, Ball Steven, D'Hulst Christophe, Mérida Ángel (2007): The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. The Plant Journal, 49, 492-504
Rohde Wolfgang, Becker Dieter, Salamini Francesco (1988): Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Research, 16, 7185-7185
Sano Y. (1984): Differential regulation of waxy gene expression in rice endosperm. Theoretical and Applied Genetics, 68, -
Šárka Evžen, Dvořáček Václav (2017): New processing and applications of waxy starch (a review). Journal of Food Engineering, 206, 77-87
Seung David, Soyk Sebastian, Coiro Mario, Maier Benjamin A., Eicke Simona, Zeeman Samuel C., Schnell Danny (2015): PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis. PLOS Biology, 13, e1002080-
Shapter F.M., Eggler P., Lee L.S., Henry R.J. (2009): Variation in Granule Bound Starch Synthase I (GBSSI) loci amongst Australian wild cereal relatives (Poaceae). Journal of Cereal Science, 49, 4-11
Shure M., Wessler S., Fedoroff N. (1983): Molecular identification and isolation of the Waxy locus in maize. Cell, 35, 225-233
Smith S. M. (2004): Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves. PLANT PHYSIOLOGY, 136, 2687-2699
Szydlowski N., Ragel P., Raynaud S., Lucas M. M., Roldan I., Montero M., Munoz F. J., Ovecka M., Bahaji A., Planchot V., Pozueta-Romero J., D'Hulst C., Merida A. (2009): Starch Granule Initiation in Arabidopsis Requires the Presence of Either Class IV or Class III Starch Synthases. THE PLANT CELL ONLINE, 21, 2443-2457
TATGE H., MARSHALL J., MARTIN C., EDWARDS E. A., SMITH A. M. (1999): Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers. Plant, Cell & Environment, 22, 543-550
Tjaden Joachim, Mohlmann Torsten, Kampfenkel Karlheinz, Neuhaus Gudrun Henrichs andH. Ekkehard (1998): Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosumL.) tuber morphology, yield and composition of tuber starch. The Plant Journal, 16, 531-540
Wang Zibu, Li Weihua, Qi Juncang, Shi Peichun, Yin Yongan (2014): Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. Journal of Food Science and Technology, 51, 419-429
Wang Zong-Yang, Zheng Fei-Qin, Shen Ge-Zhi, Gao Ji-Ping, Snustad D. Peter, Li Min-Gang, Zhang Jing-Liu, Hong Meng-Min (1995): The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. The Plant Journal, 7, 613-622
Wattebled Fabrice, Buléon Alain, Bouchet Brigitte, Ral Jean-Philippe, Liénard Luc, Delvallé David, Binderup Kim, Dauvillée David, Ball Steven, D'Hulst Christophe (2002): Granule-bound starch synthase I. European Journal of Biochemistry, 269, 3810-3820
Yamamori M. (2009): Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). Euphytica, 165, 607-614
Yamamori Makoto, Yamamoto Kazutaka (2011): Effects of two novel Wx-A1 alleles of common wheat (Triticum aestivum L.) on amylose and starch properties. Journal of Cereal Science, 54, 229-235
Yan Hong-Bo, Pan Xiao-Xue, Jiang Hua-Wu, Wu Guo-Jiang (2009): Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. Theoretical and Applied Genetics, 119, 815-825
Zeeman Samuel C., Kossmann Jens, Smith Alison M. (2010): Starch: Its Metabolism, Evolution, and Biotechnological Modification in Plants. Annual Review of Plant Biology, 61, 209-234
Zhang Huanxin, Zhang Wei, Xu Chunzhong, Zhou Xing (2013): Morphological features and physicochemical properties of waxy wheat starch. International Journal of Biological Macromolecules, 62, 304-309
Zhou Zhongkai, Zhang Yan, Chen Xiaoshan, Zhang Min, Wang Zhiwei (2014): Multi-scale structural and digestion properties of wheat starches with different amylose contents. International Journal of Food Science & Technology, 49, 2619-2627
download PDF

© 2019 Czech Academy of Agricultural Sciences