Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019

https://doi.org/10.17221/327/2020-PSECitation:

Trnka M., Balek J., Brázdil R., Dubrovský M., Eitzinger J., Hlavinka P., Chuchma F., Možný M., Prášil I., Růžek P., Semerádová D., Štěpánek P., Zahradníček P., Žalud Z. (2021): Observed changes in the agroclimatic zones in the Czech Republic  between 1961 and 2019. Plant Soil Environ., 67: 154–163.

 

download PDF

The paper shows a large-scale shift in agroclimatic zones in the territory of the Czech Republic (CR) between 1961 and 2019. The method used for agroclimatic zoning took advantage of high-resolution (0.5 km × 0.5 km) daily climate data collected from 268 climatological and 787 rain-gauge stations. The climate information was combined with soil and terrain data at the same resolution. The set of seven agroclimatic indicators allowed us to estimate rates of changes in agroclimatic conditions over the 1961–2019 period, including changes in the air temperature regime, global radiation, drought, frost risks and snow cover occurrence. These indicators are relevant for all main crops and agroclimatic zoning and account for local soil and slope conditions. The study clearly highlights major shifts in the type and extent of agroclimatic zones between 1961–2000 and 2000–2019, which led to the occurrence of entirely new combinations of agroclimatic indicators.

 

References:
Allen G.A., Walter I.A., Elliot R.L., Howell T.A. (2005): ASCE Standardized Reference Evapotranspiration Equation. Reston, American
 
Society of Civil Engineers. ISBN: 9780784408056
 
Altera (2011): Recommendations for establishing Action Programmes under Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Final report. Part A. Available at: https://op.europa.eu/en/publication-detail/-/publication/057e5f2e-904a-4507-815e-cdf5c616a750/language-en/format-PDF/source-search
 
Ballabio C., Panagos P., Montanarella L. (2016): Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma, 261: 110–123. https://doi.org/10.1016/j.geoderma.2015.07.006
 
Corine CLC2018: Available at: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
 
Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimda J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D. (2007): The shuttle radar topography mission. Review of Geophysics, 45: RG2004. https://doi.org/10.1029/2005RG000183
 
Fischer G., Nachtergaele F.O., Prieler S., Teixeira E., Toth G., van Velthuizen H., Verelst L. (2012): Global Agro-ecological Zones (GAEZ v3.0) – Model Documentation. Laxenburg and Rome, International Institute for Applied Systems Analysis and Food and Agriculture Organisation.
 
Fischer G., Shah M.M., van Velthuizen H.T., Nachtergaele F.O. (2001): Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report. Laxenburg, IIASA, RR-02-02.
 
Harlfinger O., Knees G. (1999): Climate Handbook of the Austrian Soil Assessment. Wien, Communication from the Austrian Soil Science Society. ISBN 3703003413 (In German)
 
Hlavinka P., Trnka M., Balek J., Semerádová D., Hayes M., Svoboda M., Eitzinger J., Možný M., Fischer M., Hunt E., Žalud Z. (2011): Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agricultural Water Management, 98: 1249–1261. https://doi.org/10.1016/j.agwat.2011.03.011
 
Kopáček J., Hejzlar J., Posch M. (2013): Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900–2010. Environmental Science and Technology, 47: 6400–6407. https://doi.org/10.1021/es400181m
 
Köppen W. (1900): Versuch einer Klassification der Klimat, Vorsuchsweize nach ihren Beziehungen zur Pflanzenwelt. Geographische Zeitschrift, 6: 593–611. (In German)
 
Kořistka K. (1860): Die Markgrafschaft Mähren und das Herzogthum Schlesien in ihren geographischen Verhältnissen. Wien and Olmüz, Eduard Hölzel’s Verlags-Expedition.
 
Kurpelová M., Coufal L., Čulík J. (1975): Agroclimatological Conditions of the Czechoslovakia. Bratislava, Hydrometeorological Institute. (In Slovak)
 
Martínková M., Hejduk T., Fučík P., Vymazal J., Hanel M. (2018): Assessment of runoff nitrogen load reduction measures for agricultural catchments. Open Geosciences, 10: 403–412. https://doi.org/10.1515/geo-2018-0032
 
Metzger M.J., Bunce R.G.H., Jongman R.H.G., Mücher C.A., Watkins J.W. (2005): A climatic stratification of the environment of Europe. Global Ecology and Biogeography, 14: 549–563. https://doi.org/10.1111/j.1466-822X.2005.00190.x
 
Metzger M.J., Bunce R.G.H., Van Eupen M., Mirtl M. (2010): An assessment of long term ecosystem research activities across European socio-ecological gradients. Journal of Environmental Management, 91: 1357–1365. https://doi.org/10.1016/j.jenvman.2010.02.017
 
Mooney H., Larigauderie A., Cesario M., Elmquist T., Hoegh-Guldberg O., Lavorel S., Mace G.M., Palmer M., Scholes R., Yahara T. (2009): Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability, 1: 46–54. https://doi.org/10.1016/j.cosust.2009.07.006
 
Němec J. (2001): Assessment and Evaluation of Farm Land in the Czech Republic. Prague, Research Institute of Agriculture Economics. ISBN 808589890X (In Czech)
 
Novotný I., Vopravil J., Kohoutová L. (eds.) (2013): Methodology of Mapping and Updating of Soil Ecological Units. 4th Edition. Prague, Research Institute for Soil and Water Conservation. ISBN 978-80-87361-21-4 (In Czech)
 
Pereira H.M., Belnap J., Brummitt N., Collen B., Ding H., Gonzalez-Espinosa M., Gregory R.D., Honrado J.O., Jongman R.H., Julliard R., Mcrae L., Proenã§a V.N., Rodrigues P.C., Opige M., Rodriguez J.P., Schmeller D.S., Van Swaay C., Vieira C. (2010): Global biodiversity monitoring. Frontiers in Ecology and the Environment, 8: 459–460. https://doi.org/10.1890/10.WB.23
 
Petr J. (ed.) (1991): Weather and Yield. Developments in Crop Science 20. Amsterdam and New York, Elsevier. ISBN 044441617X
 
Sanderson M. (1999): The classification of climates from Pythagoras to Koeppen. Bulletin of the American Meteorological Society, 80: 669–673. https://doi.org/10.1175/1520-0477(1999)080<0669:TCOCFP>2.0.CO;2
 
State Institute for Agriculture Supervision and Testing (2019): Available at: http://eagri.cz/public/web/file/625530/obilniny_2019.pdf (accessed June 20, 2020)
 
Štěpánek P., Zahradníček P., Farda A. (2013): Experiences with data quality control and homogenization of daily records of various meteorological elements in the Czech Republic in the period 1961–2010. Időjárás, 117: 123–141.
 
Thornthwaite C.W. (1948): An approach toward a rational classification of climate. Geographical Review, 38: 55–94. https://doi.org/10.2307/210739
 
Tomášek M. (2000): Soils of the Czech Republic. Prague, Czech Geological Service. ISBN 8070756888 (In Czech)
 
Trnka M., Brázdil B., Dubrovský M., Semerádová D., Štěpánek P., Dobrovolný P., Možný M., Eitzinger J., Málek J., Formayer H., Balek J., Žalud Z. (2011): A 200-year climate record in Central Europe: implications for agriculture. Agronomy for Sustainable Development, 31: 631–641. https://doi.org/10.1007/s13593-011-0038-9
 
Trnka M., Eitzinger J., Hlavinka P., Dubrovský M., Semerádová D., Štěpánek P., Thaler S., Žalud Z., Možný M., Formayer H. (2009): Climate-driven changes of production regions in central Europe. Plant, Soil and Environment, 55: 257–266. https://doi.org/10.17221/1017-PSE
 
Vopravil J., Khel T., Heřmanovská D., Holubík O., Huislová (2018): The map definiton of water retention capacity characteristics in agricultural and non-agricultural soils with territorial categorization within the Czech Republic. Prague, Research Institute for Soil and Water Conservation, Certificate No. 8/14130-MZe-2018.
 
Zahradníček P., Brázdil R., Štěpánek P., Trnka M. (2020): Reflection of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. International Journal of Climatology, 41: 1211–1229. https://doi.org/10.1002/joc.6791
 
Žalud Z., Hlavinka P., Prokeš K., Semerádová D., Balek J., Trnka M. (2017): Impacts of water availability and drought on maize yield – a comparison of 16 indicators. Agricultural Water Management, 188: 126–135. https://doi.org/10.1016/j.agwat.2017.04.007
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti