Bhattacharyya P., Dash P.K., Swain C.K., Padhy S.R., Roy K.S., Neogi S., Berliner J., Adak T., Pokhare S.S., Baig M.J., Mohapatra T. (2019): Mechanism of plant mediated methane emission in tropi-
https://doi.org/10.1016/j.scitotenv.2018.09.141
cal lowland rice. Science of The Total Environment, 651: 84–92.
Carlson K.M., Gerber J.S., Mueller N.D., Herrero M., MacDonald G.K., Brauman K.A., Havlik P., O’Connell C.S., Johnson J.A., Saatchi S., West P.C. (2017): Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 7: 63–68.
https://doi.org/10.1038/nclimate3158
Conrad R. (2007): Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 96: 1–63.
FAOSTAT (2017): Available at: http://www.fao.org/faostat/en/#data/QC. (accessed 15 May 2019)
Gutierrez J., Kim S.Y., Kim P.J. (2013): Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crops Research, 146: 16–24.
https://doi.org/10.1016/j.fcr.2013.03.003
Henckel T., Friedrich M., Conrad R. (1999): Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16s rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Applied and Environmental Microbiology, 65: 1980–1990.
Huang L.Y., Sun F., Yuan S., Peng S.B., Wang F. (2018): Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Research, 216: 150–157.
https://doi.org/10.1016/j.fcr.2017.11.019
Huang M., Jiang P., Shan S.L., Gao W., Ma G.H., Zou Y.B., Uphoff N., Yuan L.P. (2017): Higher yields of hybrid rice do not depend on nitrogen fertilization under moderate to high soil fertility conditions. Rice, 10: 43.
https://doi.org/10.1186/s12284-017-0182-1
Huang S., Zeng Y.J., Wu J.F., Shi Q.H., Pan X.H. (2013): Effect of crop residue retention on rice yield in China: A meta-analysis. Field Crops Research, 154: 188–194.
https://doi.org/10.1016/j.fcr.2013.08.013
Hussain S., Peng S.B., Fahad S., Khaliq A., Huang J.L., Cui K.H., Nie L.X. (2015): Rice management interventions to mitigate greenhouse gas emissions: A review. Environmental Science and Pollution Research, 22: 3342–3360.
https://doi.org/10.1007/s11356-014-3760-4
IPCC (2013): Climate change 2013: The physical science basis. In: Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J.,
Nauels A., Xia Y., Bex V., Midgley P.M. (eds.): Working Group I Contribution to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York, Cambridge University Press, 1535.
IUSS Working Group, WRB (2006): World Reference Base for Soil Resources 2006.World Soil Resources Reports, No. 103. Rome, Food and Agriculture Organization.
Jiang Y., Wang L.L., Yan X.J., Tian Y.L., Deng A.X., Zhang W.J. (2013): Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China. Rice Science, 20: 427–433.
https://doi.org/10.1016/S1672-6308(13)60157-2
Jiang P., Xie X.B., Huang M., Zhou X.F., Zhang R.C., Chen J.N., Wu D.D., Xia B., Xiong H., Xu F.X., Zou Y.B. (2016a): Potential yield increase of hybrid rice at five locations in Southern China. Rice, 9: 11.
https://doi.org/10.1186/s12284-016-0085-6
Jiang Y., Tian Y.L., Sun Y.N., Zhang Y., Hang X.N., Deng A.X., Zhang J., Zhang W.J. (2016b): Effect of rice panicle size on paddy field CH4 emissions. Biology and Fertility of Soils, 52: 389–399.
https://doi.org/10.1007/s00374-015-1084-2
Jiang Y., van Groenigen K.J., Huang S., Hungate B.A., van Kessel C., Hu S.J., Zhang J., Wu L.H., Yan X.J., Wang L.L., Chen J., Hang X.N., Zhang Y., Horwath W.R., Ye R.Z., Linquist B.A., Song Z.W., Zheng C.Y., Deng A.X., Zhang W.J. (2017): Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 23: 4728–4738.
https://doi.org/10.1111/gcb.13737
Jiang Y., Liao P., van Gestel N., Sun Y.N., Zeng Y.J., Huang S., Zhang W.J., van Groenigen K.J. (2018): Lime application lowers the global warming potential of a double rice cropping system. Geoderma, 325: 1–8.
https://doi.org/10.1016/j.geoderma.2018.03.034
Jiang Y., Qian H.Y., Huang S., Zhang X.Y., Wang L., Zhang L., Shen M.X., Xiao X.P., Chen F., Zhang H.L., Lu C.Y., Li C., Zhang J., Deng A.X., van Groenigen K.J., Zhang W.J. (2019): Acclimation of methane emissions from rice paddy fields to straw addition. Science Advances, 5: eaau9038.
https://doi.org/10.1126/sciadv.aau9038
Liao P., Huang S., van Gestel N., Zeng Y.J., Wu Z.M., van Groenigen K.J. (2018): Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research, 216: 217–224.
https://doi.org/10.1016/j.fcr.2017.11.026
Liu Z., Sun K., Zheng B., Dong Q.L., Li G., Han H.F., Li Z.J., Ning T.Y. (2019): Impacts of straw, biogas slurry, manure and mineral fertilizer applications on several biochemical properties and crop yield in a wheat-maize cropping system. Plant, Soil and Environment, 65: 1–8.
https://doi.org/10.17221/467/2018-PSE
Luton P.E., Wayne J.M., Sharp R.J., Riley P.W. (2002): The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148: 3521–3530.
https://doi.org/10.1099/00221287-148-11-3521
Ma G.H., Yuan L.P. (2015): Hybrid rice achievements, development and prospect in China. Journal of Integrative Agriculture, 14: 197–205.
https://doi.org/10.1016/S2095-3119(14)60922-9
Ma K., Qiu Q.F., Liu Y.H. (2010): Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biology, 16: 3085–3095.
Ma Y.C., Wang J.Y., Zhou W., Yan X.Y., Xiong Z.Q. (2012): Greenhouse gas emissions during the seedling stage of rice agriculture as affected by cultivar type and crop density. Biology and Fertility of Soils, 48: 589–595.
https://doi.org/10.1007/s00374-011-0656-z
Megonigal J.P., Hines M.E., Visscher P.T. (2004): Anaerobic metabolism: Linkages to trace gases and aerobic processes. In: Schlesinger W.H. (ed.): Biogeochemistry. Oxford, Elsevier-Pergamon, 317–424.
Murphy R.P., Montes-Molina J.A., Govaerts B., Six J., van Kessel C., Fonte S.J. (2016): Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas, Mexico.
https://doi.org/10.1016/j.apsoil.2016.03.014
Applied Soil Ecology, 103: 110–116.
Peng S.B., Khush G.S., Virk P., Tang Q.Y., Zou Y.B. (2008): Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108: 32–38.
https://doi.org/10.1016/j.fcr.2008.04.001
Sun L.M., Hussain S., Liu H.Y., Peng S.B., Huang J.L., Cui K.H., Nie L.X. (2015): Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in Central China. Field Crops Research, 175: 87–95.
https://doi.org/10.1016/j.fcr.2015.02.009
Wang W., Chen C.L., Wu X.H., Xie K.J., Yin C.M., Hou H.J., Xie X.L. (2019): Effects of reduced chemical fertilizer combined with straw retention on greenhouse gas budget and crop production in double rice fields. Biology and Fertility of Soils, 55: 89–96.
https://doi.org/10.1007/s00374-018-1330-5
Yuan L.P. (2014): Development of hybrid rice to ensure food security. Rice Science, 21: 1–2.
https://doi.org/10.1016/S1672-6308(13)60167-5
Yuan S., Nie L.X., Wang F., Huang J.L., Peng S.B. (2017): Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Research, 210: 129–135.
https://doi.org/10.1016/j.fcr.2017.05.024
Yuan Y., Dai X.Q., Wang H.M. (2019): Fertilization effects on CH4, N2O and CO2 fluxes from a subtropical double rice cropping system. Plant, Soil and Environment, 65: 189–197.
https://doi.org/10.17221/453/2018-PSE
Zhang Y., Jiang Y., Li Z.J., Zhu X.C., Wang X.F., Chen J., Hang X.N., Deng A.X., Zhang J., Zhang W.J. (2015): Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Agriculture, Ecosystems and Environment, 208: 86–93.
https://doi.org/10.1016/j.agee.2015.04.030
Zheng H.B., Fu Z.Q., Zhong J., Long W.F. (2018): Low methane emission in rice cultivars with high radial oxygen loss. Plant and Soil, 431: 119–128.
https://doi.org/10.1007/s11104-018-3747-x