Chitosan in modern agriculture production

https://doi.org/10.17221/332/2021-PSECitation:

Faqir Y.H., Ma J.H., Chai Y.L. (2021): Chitosan in modern agriculture production. Plant Soil Environ, 67: 679–699.

 

download PDF

In the perspective of return to nature, using scientific and technical progress for improved living standards, people began to search for solutions to alleviate environmental pollution. Researchers intend to make clean, affordable products that are gentle yet effective. Chitosan derived from the exoskeleton of crustaceans, cuticles of insects, cell walls of fungi, and some algae are renowned for many decades to exhibit biotic properties, especially anti-microbial characteristics. Here we review each ingredient for sourcing organic chitosan, with clean raw materials that can make pure, rich, and powerful products working naturally. Our study elaborates advances and utilisation of chitosan for industrial control-release fertilisers by physical, chemical, and multifaceted formulations such as water-retaining super absorbent, polyacrylic acid, and resins. Plant growth-promoting properties of chitosan as a growth regulator, pest/disease resistance, signalling regulation, effect on nuclear deformation, and apoptosis. Chitosan can improve the plant defence mechanism by stimulating photochemistry and enzymes related to photosynthesis. Furthermore, electrophysiological modification induced by chitosan can practically enable it to be utilised as a herbicide. Chitosan has an excellent role in improving soil fertility and plant growth as well as plant growth promoters. It is concluded, chitosan can play a key role in modern agriculture production and could be a valuable source promoting agricultural ecosystem sustainability. Future suggestions will be based on current achievements and also notable gaps. In addition, chitosan has a huge contribution to reducing fertilisers pollution, managing agricultural pests and pathogens in modern-day agriculture.

 

References:
Abdel-Aziz H., Hasaneen M.N., Omar A. (2018): Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egyptian Journal of Botany, 58: 87–95. https://doi.org/10.21608/ejbo.2018.1907.1137
 
Aftab T., Hakeem K.R. (2021): Plant Growth Regulators: Signalling Under Stress Conditions. Cham, Springer Nature. ISBN: 978-3-030-61153-8
 
Agnihotri S.A., Aminabhavi T.M. (2004): Controlled release of clozapine through chitosan microparticles prepared by a novel method. Journal of Controlled Release, 96: 245–259. https://doi.org/10.1016/j.jconrel.2004.01.025
 
Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M. (2004): Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 100: 5–28. https://doi.org/10.1016/j.jconrel.2004.08.010
 
Ahmed K.B.M., Khan M.M.A., Siddiqui H., Jahan A. (2020): Chitosan and its oligosaccharides, a promising option for sustainable crop production – a review. Carbohydrate Polymers, 227: 115331. https://doi.org/10.1016/j.carbpol.2019.115331
 
Akter J., Jannat R., Hossain M.M., Ahmed J.U., Rubayet M.T. (2018): Chitosan for plant growth promotion and disease suppression against anthracnose in chilli. International Journal of Environment, Agriculture and Biotechnology, 3: 806–817. https://doi.org/10.22161/ijeab/3.3.13
 
Al-Dhabaan F.A., Mostafa M., Almoammar H., Abd-Elsalam K.A. (2018): Chitosan-based nanostructures in plant protection applications. In: Abd-Elsalam K.A., Prasad R. (eds.): Nanobiotechnology Applications in Plant Protection. Cham, Springer, 351–384. ISBN: 978-3-319-91161-8
 
Alengebawy A., Abdelkhalek S.T., Qureshi S.R., Wang M.-Q. (2021): Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics, 9: 42. https://doi.org/10.3390/toxics9030042
 
Alghuthaymi M.A., Abd-Elsalam K.A., Shami A., Said-Galive E., Shtykova E.V., Naumkin A.V. (2020): Silver/chitosan nanocomposites: preparation and characterization and their fungicidal activity against dairy cattle toxicosis Penicillium expansum. Journal of Fungi, 6: 51. https://doi.org/10.3390/jof6020051
 
Álvarez S.P., Tapia M.A.M., Pérez K.I.A., Guerrero A.M. (2017): Agriculture applications of entomopathogenic fungi using nanotechnology. In: Prasad R. (ed.): Fungal Nanotechnology. Berlin, Springer. ISBN: 978-3-319-68424-6
 
Arisekar U., Shakila R.J., Shalini R., Jeyasekaran G. (2021): Pesticides contamination in the Thamirabarani, a perennial river in peninsular India: the first report on ecotoxicological and human health risk assessment. Chemosphere, 267: 129251. https://doi.org/10.1016/j.chemosphere.2020.129251
 
Arruda S.C.C., Silva A.L.D., Galazzi R.M., Azevedo R.A., Arruda M.A.Z. (2015): Nanoparticles applied to plant science: a review. Talanta, 131: 693–705. https://doi.org/10.1016/j.talanta.2014.08.050
 
Badawy M.E., Rabea E.I. (2011): A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011: 460381. https://doi.org/10.1155/2011/460381
 
Bandforuzi S.R., Hadjmohammadi M.R. (2019): Modified magnetic chitosan nanoparticles based on mixed hemimicelle of sodium dodecyl sulfate for enhanced removal and trace determination of three organophosphorus pesticides from natural waters. Analytica Chimica Acta, 1078: 90–100. https://doi.org/10.1016/j.aca.2019.06.026
 
Bao J., Hou C., Chen M., Li J., Huo D., Yang M., Luo X., Lei Y. (2015): Plant esterase-chitosan/gold nanoparticles-graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides. Journal of Agricultural and Food Chemistry, 63: 10319–10326. https://doi.org/10.1021/acs.jafc.5b03971
 
Bargaz A., Lyamlouli K., Chtouki M., Zeroual Y., Dhiba D. (2018): Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in Microbiology, 9: 1606. https://doi.org/10.3389/fmicb.2018.01606
 
Benckiser G., Christ E., Herbert T., Weiske A., Blome J., Hardt M. (2013): The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP)-quantification and effects on soil metabolism. Plant and Soil, 371: 257–266. https://doi.org/10.1007/s11104-013-1664-6
 
Campos E.V.R., de Oliveira J.L., Fraceto L.F., Singh B. (2015): Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 35: 47–66. https://doi.org/10.1007/s13593-014-0263-0
 
Cardona T., Rutherford A.W. (2019): Evolution of photochemical reaction centres: more twists? Trends in Plant Science, 24: 1008–1021.
 
Carozzi N.B. (ed.) (1997): Advances in Insect Control: The Role of Transgenic Plants. Boca Raton, CRC Press. ISBN 9780748404179
 
Celis R., Adelino M., Hermosín M., Cornejo J. (2012): Montmorillonite-chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. Journal of Hazardous Materials, 209: 67–76. https://doi.org/10.1016/j.jhazmat.2011.12.074
 
Chakraborty M., Hasanuzzaman M., Rahman M., Khan M., Rahman A., Bhowmik P., Mahmud N.U., Tanveer M., Islam T. (2020): Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10: 624. https://doi.org/10.3390/agriculture10120624
 
Chamnanmanoontham N., Pongprayoon W., Pichayangkura R., Roytrakul S., Chadchawan S. (2015): Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regulation, 75: 101–114. https://doi.org/10.1007/s10725-014-9935-7
 
Chen C., Gao Z., Qiu X., Hu S. (2013): Enhancement of the controlled-release properties of chitosan membranes by crosslinking with suberoyl chloride. Molecules, 18: 7239–7252. https://doi.org/10.3390/molecules18067239
 
Chen W.S. (2020): The transformation of China’s agricultural development with multiple goals under resource and environmental constraints. In: Chen W.S. (ed.): Challenges and Opportunities for Chinese Agriculture. Singapore, Springer. ISBN: 978-981-15-3535-2
 
Choudhary R.C., Kumaraswamy R., Kumari S., Sharma S., Pal A., Raliya R., Biswas P., Saharan V. (2017): Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 7: 1–11. https://doi.org/10.1038/s41598-017-08571-0
 
Cole J.C., Smith M.W., Penn C.J., Cheary B.S., Conaghan K.J. (2016): Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211: 420–430. https://doi.org/10.1016/j.scienta.2016.09.028
 
Corradini E., De Moura M., Mattoso L. (2010): A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters, 4: 509–515. https://doi.org/10.3144/expresspolymlett.2010.64
 
Darwis D., Puspitasari T., Iramani D., Susilowati S., Pangerteni D. (2014): Preparation of low molecular weight chitosan by radiation and its application for plant growth promoter. In: International Atomic Energy Agency, Radioisotope Products and Radiation Technology Section, Vienna. ISBN 978-92-0-106414-1
 
Davydova V., Nagorskaya V., Gorbach V., Kalitnik A., Reunov A., Solov’Eva T., Ermak I. (2011): Chitosan antiviral activity: dependence on structure and depolymerization method. Applied Biochemistry and Microbiology, 47: 103–108. (In Russian) https://doi.org/10.1134/S0003683811010042
 
Dodgson J.L., Dodgson W. (2017): Comparison of effects of chitin and chitosan for control of Colletotrichum sp. on cucumbers. Journal of Pure and Applied Microbiology, 11: 87–94. https://doi.org/10.22207/JPAM.11.1.12
 
Dos Santos Silva M., Cocenza D.S., Grillo R., de Melo N.F.S., Tonello P.S., de Oliveira L.C., Cassimiro D.L., Rosa A.H., Fraceto L.F. (2011): Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 190: 366–374. https://doi.org/10.1016/j.jhazmat.2011.03.057
 
Dzung N.A., Khanh V.T.P., Dzung T.T. (2011): Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers, 84: 751–755. https://doi.org/10.1016/j.carbpol.2010.07.066
 
El-Mohamedya R., Abd El-Aziz M., Kamel S. (2019): Antifungal activity of chitosan nanoparticles against some plant pathogenic fungi in vitro. Agricultural Engineering International: CIGR Journal, 21: 201–209.
 
El Hadrami A., Adam L.R., El Hadrami I., Daayf F. (2010): Chitosan in plant protection. Marine Drugs, 8: 968–987. https://doi.org/10.3390/md8040968
 
Elsoud M.M.A., El Kady E. (2019): Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre, 43: 1–12.
 
Essawy H.A., Ghazy M.B., Abd El-Hai F., Mohamed M.F. (2016): Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. International Journal of Biological Macromolecules, 89: 144–151. https://doi.org/10.1016/j.ijbiomac.2016.04.071
 
Falcón A.B., Cabrera J.C., Costales D., Ramírez M.A., Cabrera G., Toledo V., Martínez-Téllez M.A. (2008): The effect of size and acetylation degree of chitosan derivatives on tobacco plant protection against Phytophthora parasitica nicotianae. World Journal of Microbiology and Biotechnology, 24: 103–112. https://doi.org/10.1007/s11274-007-9445-0
 
Fang S., Wang G., Li P., Xing R., Liu S., Qin Y., Yu H., Chen X., Li K. (2018): Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. International Journal of Biological Macromolecules, 115: 754–761. https://doi.org/10.1016/j.ijbiomac.2018.04.072
 
Gan S., Ng H.K. (2012): Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chemical Engineering Journal, 213: 295–317. https://doi.org/10.1016/j.cej.2012.10.005
 
Giroto A.S., Guimarães G.G., Foschini M., Ribeiro C. (2017): Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Scientific Reports, 7: 1–11. https://doi.org/10.1038/srep46032
 
Głąb T., Szewczyk W., Gondek K., Knaga J., Tomasik M., Kowalik K. (2020): Effect of plant growth regulators on visual quality of turfgrass. Scientia Horticulturae, 267: 109314. https://doi.org/10.1016/j.scienta.2020.109314
 
Godana E.A., Yang Q., Wang K., Zhang H., Zhang X., Zhao L., Abdelhai M.H., Legrand N.N.G. (2020): Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism. LWT – Food Science and Technology, 124: 109188. https://doi.org/10.1016/j.lwt.2020.109188
 
Gong B.Q., Wang F.Z., Li J.F. (2020): Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies. Trends in Plant Science, 25: 805–816. https://doi.org/10.1016/j.tplants.2020.03.006
 
Grillo R., Pereira A.E., Nishisaka C.S., De Lima R., Oehlke K., Greiner R., Fraceto L.F. (2014): Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. Journal of Hazardous Materials, 278: 163–171. https://doi.org/10.1016/j.jhazmat.2014.05.079
 
Guan H., Chi D., Yu J., Li X. (2008): A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-imidacloprid. Pesticide Biochemistry and Physiology, 92: 83–91. https://doi.org/10.1016/j.pestbp.2008.06.008
 
Guan Y.J., Hu J., Wang X.J., Shao C.X. (2009): Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10: 427–433. https://doi.org/10.1631/jzus.B0820373
 
Guo Z., Xing R., Liu S., Zhong Z., Ji X., Wang L., Li P. (2008): The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydrate Polymers, 71: 694–697. https://doi.org/10.1016/j.carbpol.2007.06.027
 
Habala L., Varényi S., Bilková A., Herich P., Valentová J., Kožíšek J., Devínsky F. (2016): Antimicrobial activity and urease inhibition of schiff bases derived from isoniazid and fluorinated benzaldehydes and of their copper (II) complexes. Molecules, 21: 1742. https://doi.org/10.3390/molecules21121742
 
Hadwiger L.A. (2013): Multiple effects of chitosan on plant systems: solid science or hype. Plant Science, 208: 42–49. https://doi.org/10.1016/j.plantsci.2013.03.007
 
Hamed I., Özogul F., Regenstein J.M. (2016): Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends in Food Science and Technology, 48: 40–50. https://doi.org/10.1016/j.tifs.2015.11.007
 
Harbinson J., Croce R., van Grondelle R., van Amerongen H., van Stokkum I. (2018): Chlorophyll fluorescence as a tool for describing the operation and regulation of photosynthesis in vivo. In: Croce R., van Grondelle R., van Amerongen H., van Stokkum I. (eds.): Light Harvesting in Photosynthesis. Boca Raton, CRC Press. ISBN 9780367781491
 
He X., Sun Z., He K., Guo S. (2017): Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress. Applied Microbiology and Biotechnology, 101: 2779–2789. https://doi.org/10.1007/s00253-016-8070-y
 
Jameela S., Kumary T., Lal A., Jayakrishnan A. (1998): Progesterone-loaded chitosan microspheres: a long acting biodegradable controlled delivery system. Journal of Controlled Release, 52: 17–24. https://doi.org/10.1016/S0168-3659(97)00187-9
 
Jamnongkan T., Kaewpirom S. (2010): Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. Journal of Polymers and the Environment, 18: 413–421. https://doi.org/10.1007/s10924-010-0228-6
 
Jiang J., Fu Y. (2013): Prospect for physical type slow/controlled release fertilizers. World Journal of Forestry, 2: 35–39. https://doi.org/10.12677/WJF.2013.24007
 
Kalia A., Sharma S.P., Kaur H., Kaur H. (2020): Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: prospects and challenges. In: Abd-Elsalam K.A. (ed.): Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Amsterdam, Elsevier. ISBN: 9780128213544
 
Katiyar D., Hemantaranjan A., Singh B. (2015): Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20: 1–9. https://doi.org/10.1007/s40502-015-0139-6
 
Kulikov S., Chirkov S., Il’Ina A., Lopatin S., Varlamov V. (2006): Effect of the molecular weight of chitosan on its antiviral activity in plants. Applied Biochemistry and Microbiology, 42: 200–203. https://doi.org/10.1134/S0003683806020165
 
Kumar S., Nehra M., Dilbaghi N., Marrazza G., Hassan A.A., Kim K.-H. (2019): Nano-based smart pesticide formulations: emerging opportunities for agriculture. Journal of Controlled Release, 294: 131–153. https://doi.org/10.1016/j.jconrel.2018.12.012
 
Kusumastuti Y., Istiani A., Purnomo C.W. (2019): Chitosan-based polyion multilayer coating on NPK fertilizer as controlled released fertilizer. Advances in Materials Science and Engineering, 2019: 2958021. https://doi.org/10.1155/2019/2958021
 
Kweon D.K., Kang D.W. (1999): Drug-release behavior of chitosan-g-poly(vinyl alcohol) copolymer matrix. Journal of Applied Polymer Science, 74: 458–464. https://doi.org/10.1002/(SICI)1097-4628(19991010)74:2<458::AID-APP29>3.0.CO;2-6
 
Lestari R.S., Kustiningsih I., Irawanto D., Bahaudin R., Wardana R.L., Muhammad F., Suyuti M., Luthfi M. (2021): Preparation of chitosan microspheres as carrier material to controlled release of urea fertilizer. South African Journal of Chemical Engineering, 38: 70–77. https://doi.org/10.1016/j.sajce.2021.08.005
 
Li B., Liu B., Shan C., Ibrahim M., Lou Y., Wang Y., Xie G., Li H., Sun G. (2013): Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Management Science, 69: 312–320. https://doi.org/10.1002/ps.3399
 
Li J., Wu X., Shi Q., Li C., Chen X. (2019): Effects of hydroxybutyl chitosan on improving immunocompetence and antibacterial activities. Materials Science and Engineering: C 105, 110086.
 
Li J., Wu Y., Zhao L. (2016): Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydrate Polymers, 148: 200–205. https://doi.org/10.1016/j.carbpol.2016.04.025
 
Li K., Xing R., Liu S., Li P. (2020a): Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry, 68: 12203–12211.
 
Li K., Zhang X., Yu Y., Xing R., Liu S., Li P. (2020b): Effect of chitin and chitosan hexamers on growth and photosynthetic characteristics of wheat seedlings. Photosynthetica, 58: 819–826.
 
Lopez-Moya F., Lopez-Llorca L.V. (2016): Omics for investigating chitosan as an antifungal and gene modulator. Journal of Fungi, 2: 11. https://doi.org/10.3390/jof2010011
 
Lopez-Moya F., Martin-Urdiroz M., Oses-Ruiz M., Were V.M., Fricker M.D., Littlejohn G., Lopez-Llorca L.V., Talbot N.J. (2021): Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaportheoryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytologist, 230: 1578–1593. https://doi.org/10.1111/nph.17268
 
Maghsoodi M.R., Lajayer B.A., Hatami M., Mirjalili M.H. (2019): Challenges and opportunities of nanotechnology in plant-soil mediated systems: beneficial role, phytotoxicity, and phytoextraction. In: Ghorbanpour M., Wani S.H. (eds.): Advances in Phytonanotechnology. Amsterdam, Elsevier. ISBN: 9780128153222
 
Malerba M., Cerana R. (2016): Chitosan effects on plant systems. International Journal of Molecular Sciences, 17: 996. https://doi.org/10.3390/ijms17070996
 
Maluin F.N., Hussein M.Z. (2020): Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules, 25: 1611. https://doi.org/10.3390/molecules25071611
 
Mao S., Liu X., Xia W. (2021): Chitosan oligosaccharide-g-linalool polymer as inhibitor of hyaluronidase and collagenase activity. International Journal of Biological Macromolecules, 166: 1570–1577. https://doi.org/10.1016/j.ijbiomac.2020.11.036
 
Maxwell T., Lee K.-S., Chun S.-Y., Nam K.-S. (2017): Mineral-balanced deep sea water enhances the inhibitory effects of chitosan oligosaccharide on atopic dermatitis-like inflammatory response. Biotechnology and Bioprocess Engineering, 22: 120–128. https://doi.org/10.1007/s12257-017-0091-6
 
Mondal M., Puteh A., Dafader N., Rafii M., Malek M. (2013): Foliar application of chitosan improves growth and yield in maize. Journal of Food, Agriculture and Environment, 11: 520–523.
 
Moreno-Vásquez M.J., Valenzuela-Buitimea E.L., Plascencia-Jatomea M., Encinas-Encinas J.C., Rodríguez-Félix F., Sánchez-Valdes S., Rosas-Burgos E.C., Ocaño-Higuera V.M., Graciano-Verdugo A.Z. (2017): Functionalization of chitosan by a free radical reaction: characterization, antioxidant and antibacterial potential. Carbohydrate Polymers, 155: 117–127. https://doi.org/10.1016/j.carbpol.2016.08.056
 
Muley A.B., Shingote P.R., Patil A.P., Dalvi S.G., Suprasanna P. (2019): Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers, 210: 289–301. https://doi.org/10.1016/j.carbpol.2019.01.056
 
Murchie E.H., Ruban A.V. (2020): Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. The Plant Journal, 101: 885–896. https://doi.org/10.1111/tpj.14601
 
Naim A.A., Umar A., Sanagi M.M., Basaruddin N. (2013): Chemical modification of chitin by grafting with polystyrene using ammonium persulfate initiator. Carbohydrate Polymers, 98: 1618–1623. https://doi.org/10.1016/j.carbpol.2013.07.054
 
Namasivayam K.R.S., Aruna A., Gokila (2014): Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Research Journal of Biotechnology, 9: 19–27.
 
Nguyen V.B., Wang S.L. (2017): Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Marine Drugs, 15: 350. https://doi.org/10.3390/md15110350
 
Ni X.Y., Wu Y.J., Wu Z.Y., Wu L., Qiu G.N., Yu L.X. (2013): A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosystems Engineering, 115: 274–282. https://doi.org/10.1016/j.biosystemseng.2013.04.001
 
No H.K., Park N.Y., Lee S.H., Meyers S.P. (2002): Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74: 65–72. https://doi.org/10.1016/S0168-1605(01)00717-6
 
Ohya Y., Shiratani M., Kobayashi H., Ouchi T. (1994): Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Journal of Macromolecular Science – Pure and Applied Chemistry, 31: 629–642. https://doi.org/10.1080/10601329409349743
 
Palma-Guerrero J., Lopez-Jimenez J., Pérez-Berná A., Huang I.C., Jansson H.B., Salinas J., Villalaín J., Read N., Lopez-Llorca L. (2010): Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75: 1021–1032. https://doi.org/10.1111/j.1365-2958.2009.07039.x
 
Paula H.C., Sombra F.M., de Freitas Cavalcante R., Abreu F.O., de Paula R.C. (2011): Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering, C 31: 173–178. https://doi.org/10.1016/j.msec.2010.08.013
 
Peng J., Wang X., Lou T. (2020): Preparation of chitosan/gelatin composite foam with ternary solvents of dioxane/acetic acid/water and its water absorption capacity. Polymer Bulletin, 77: 5227–5244. https://doi.org/10.1007/s00289-019-03016-2
 
Pereira A., Sandoval-Herrera I., Zavala-Betancourt S., Oliveira H., Ledezma-Pérez A., Romero J., Fraceto L. (2017): γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydrate Polymers, 157: 1862–1873. https://doi.org/10.1016/j.carbpol.2016.11.073
 
Perez J.J., Francois N.J. (2016): Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydrate Polymers, 148: 134–142. https://doi.org/10.1016/j.carbpol.2016.04.054
 
Perinelli D.R., Fagioli L., Campana R., Lam J.K., Baffone W., Palmieri G.F., Casettari L., Bonacucina G. (2018): Chitosan-based nanosystems and their exploited antimicrobial activity. European Journal of Pharmaceutical Sciences, 117: 8–20. https://doi.org/10.1016/j.ejps.2018.01.046
 
Pospieszny H., Chirkov S., Atabekov J. (1991): Induction of antiviral resistance in plants by chitosan. Plant Science, 79: 63–68. https://doi.org/10.1016/0168-9452(91)90070-O
 
Pundir C.S., Chauhan N. (2012): Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Analytical Biochemistry, 429: 19–31. https://doi.org/10.1016/j.ab.2012.06.025
 
Rahman M., Mukta J.A., Sabir A.A., Gupta D.R., Mohi-Ud-Din M., Hasanuzzaman M., Miah M.G., Rahman M., Islam M.T. (2018): Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS One 13: e0203769. https://doi.org/10.1371/journal.pone.0203769
 
Rajan M., Shahena S., Chandran V., Mathew L. (2021): Controlled release of fertilizers – concept, reality, and mechanism. In: Lewu F.B., Volova T., Thomas S., Rakhimol K.R. (eds.): Controlled Release Fertilizers for Sustainable Agriculture. Amsterdam, Elsevier. ISBN: 9780128195550
 
Raliya R., Nair R., Chavalmane S., Wang W.N., Biswas P. (2015): Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7: 1584–1594. https://doi.org/10.1039/C5MT00168D
 
Romanazzi G., Feliziani E., Baños S.B., Sivakumar D. (2017): Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57: 579–601. https://doi.org/10.1080/10408398.2014.900474
 
Rostami S., Azhdarpoor A. (2019): The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere, 220: 818–827. https://doi.org/10.1016/j.chemosphere.2018.12.203
 
Rubina M.S., Vasil’kov A.Y., Naumkin A.V., Shtykova E.V., Abramchuk S.S., Alghuthaymi M.A., Abd-Elsalam K.A. (2017): Synthesis and characterization of chitosan-copper nanocomposites and their fungicidal activity against two sclerotia-forming plant pathogenic fungi. Journal of Nanostructure in Chemistry, 7: 249–258. https://doi.org/10.1007/s40097-017-0235-4
 
Sah R., Baroth A., Hussain S.A. (2020): First account of spatio-temporal analysis, historical trends, source apportionment and ecological risk assessment of banned organochlorine pesticides along the Ganga River. Environmental Pollution, 263: 114229. https://doi.org/10.1016/j.envpol.2020.114229
 
Saharan V., Mehrotra A., Khatik R., Rawal P., Sharma S., Pal A. (2013): Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62: 677–683. https://doi.org/10.1016/j.ijbiomac.2013.10.012
 
Salachna P., Byczyńska A., Jeziorska I., Udycz E. (2017): Plant growth of Verbena bonariensis L. after chitosan, gellan gum or iota-carrageenan foliar applications. World Scientific News, 62: 111–123.
 
Samuilov V.D., Kiselevsky D.B., Oleskin A.V. (2019): Mitochondria-targeted quinones suppress the generation of reactive oxygen species, programmed cell death and senescence in plants. Mitochondrion, 46: 164–171. https://doi.org/10.1016/j.mito.2018.04.008
 
Sathiyabama M., Manikandan A. (2018): Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. Journal of Agricultural and Food Chemistry, 66: 1784–1790. https://doi.org/10.1021/acs.jafc.7b05921
 
Sathiyabama M., Parthasarathy R. (2016): Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers, 151: 321–325. https://doi.org/10.1016/j.carbpol.2016.05.033
 
Shafiq I., Hussain S., Raza M.A., Iqbal N., Asghar M.A., Ali R., Fan Y.F., Mumtaz M., Shoaib M., Ansar M. (2021): Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20: 4–23. https://doi.org/10.1016/S2095-3119(20)63227-0
 
Siddaiah C.N., Prasanth K.V.H., Satyanarayana N.R., Mudili V., Gupta V.K., Kalagatur N.K., Satyavati T., Dai X.F., Chen J.Y., Mocan A. (2018): Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Scientific Reports, 8: 1–14. https://doi.org/10.1038/s41598-017-19016-z
 
Singh R.R., Chinnasri B., De Smet L., Haeck A., Demeestere K., Van Cutsem P., Van Aubel G., Gheysen G., Kyndt T. (2019): Systemic defense activation by COS-OGA in rice against root-knot nematodes depends on stimulation of the phenylpropanoid pathway. Plant Physiology and Biochemistry, 142: 202–210. https://doi.org/10.1016/j.plaphy.2019.07.003
 
Spagnol C., Rodrigues F.H., Pereira A.G., Fajardo A.R., Rubira A.F., Muniz E.C. (2012): Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydrate Polymers, 87: 2038–2045. https://doi.org/10.1016/j.carbpol.2011.10.017
 
Tayel A.A., Moussa S., Wael F., Knittel D., Opwis K., Schollmeyer E. (2010): Anticandidal action of fungal chitosan against Candida albicans. International Journal of Biological Macromolecules, 47: 454–457. https://doi.org/10.1016/j.ijbiomac.2010.06.011
 
Tham L.X., Nagasawa N., Matsuhashi S., Ishioka N.S., Ito T., Kume T. (2001): Effect of radiation-degraded chitosan on plants stressed with vanadium. Radiation Physics and Chemistry, 61: 171–175. https://doi.org/10.1016/S0969-806X(00)00388-1
 
Thamilarasan V., Sethuraman V., Gopinath K., Balalakshmi C., Govindarajan M., Mothana R.A., Siddiqui N.A., Khaled J.M., Benelli G. (2018): Single step fabrication of chitosan nanocrystals using Penaeus semisulcatus: potential as new insecticides, antimicrobials and plant growth promoters. Journal of Cluster Science, 29: 375–384. https://doi.org/10.1007/s10876-018-1342-1
 
Udayangani R., Dananjaya S., Nikapitiya C., Heo G.-J., Lee J., De Zoysa M. (2017): Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish and Shellfish Immunology, 66: 173–184. https://doi.org/10.1016/j.fsi.2017.05.018
 
Ullah F., Javed F., Ibrar M., Khan A., Nurul A.A., Akil H.M. (2021): Processing strategies of chitosan-built nano-hydrogel as smart drug carriers. In: Sabu T., Preetha B. (eds.): Nanoscale Processing. Amsterdam, Elsevier. ISBN: 9780128205709
 
Vasil’ev L., Dzyubinskaya E., Kiselevsky D., Shestak A., Samuilov V. (2011): Programmed cell death in plants: protective effect of mitochondrial-targeted quinones. Biochemistry (Moscow), 76: 1120–1130. https://doi.org/10.1134/S0006297911100051
 
Vishu Kumar B.A., Varadaraj M.C., Tharanathan R.N. (2007): Low molecular weight chitosan preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules, 8: 566–572. https://doi.org/10.1021/bm060753z
 
Vredenberg W., Durchan M., Prášil O. (2009): Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1787: 1468–1478. https://doi.org/10.1016/j.bbabio.2009.06.008
 
Wang W., Wang S.X., Guan H.S. (2012): The antiviral activities and mechanisms of marine polysaccharides: an overview. Marine Drugs, 10: 2795–2816. https://doi.org/10.3390/md10122795
 
Wani T.A., Masoodi F., Baba W.N., Ahmad M., Rahmanian N., Jafari S.M. (2019): Nanoencapsulation of agrochemicals, fertilizers, and pesticides for improved plant production. In: Ghorbanpour M., Wani S.H. (eds.): Advances in Phytonanotechnology. Amsterdam, Elsevier. ISBN: 9780128153222
 
Wen Y., Chen H., Yuan Y., Xu D., Kang X. (2011): Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae. Journal of Environmental Monitoring, 13: 879–885. https://doi.org/10.1039/c0em00593b
 
Wu Y., Wu C., Li Y., Xu T., Fu Y. (2010): PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. Journal of Membrane Science, 350: 322–332. https://doi.org/10.1016/j.memsci.2010.01.007
 
Xing K., Shen X., Zhu X., Ju X., Miao X., Tian J., Feng Z., Peng X., Jiang J., Qin S. (2016): Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. International Journal of Biological Macromolecules, 82: 830–836. https://doi.org/10.1016/j.ijbiomac.2015.09.074
 
Xue G.X., Gao H.Y., Li P.M., Zou Q. (2004): Effects of chitosan treatment on physiological and biochemical characteristics in cucumber seedlings under low temperature. Journal of Plant Physiology and Molecular Biology, 30: 441–448.
 
Yahyaabadi H.M., Asgharipour M., Basiri M. (2016): Role of chitosan in improving salinity resistance through some morphological and physiological characteristics in fenugreek (Trigonella foenum-graecum L.). Journal of Science and Technology of Greenhouse Culture, 7.
 
Yang L.Y., Zhang J.L., Bassett C.L., Meng X.H. (2012): Difference between chitosan and oligochitosan in growth of Monilinia fructicola and control of brown rot in peach fruit. LWT – Food Science and Technology, 46: 254–259. https://doi.org/10.1016/j.lwt.2011.09.023
 
Yang Y., Liu B., Yu L., Zhou Z., Ni X., Tao L., Wu Y. (2018): Nitrogen loss and rice profits with matrix-based slow-release urea. Nutrient Cycling in Agroecosystems, 110: 213–225. https://doi.org/10.1007/s10705-017-9892-4
 
Yin H., Du Y., Dong Z. (2016): Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Frontiers in Plant Science, 7: 522. https://doi.org/10.3389/fpls.2016.00522
 
Yoon J.S., Koo J., George S., Palli S.R. (2020): Evaluation of inhibitor of apoptosis genes as targets for RNAi-mediated control of insect pests. Archives of Insect Biochemistry and Physiology, 104: e21689. https://doi.org/10.1002/arch.21689
 
Younes I., Sellimi S., Rinaudo M., Jellouli K., Nasri M. (2014): Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology, 185: 57–63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029
 
Yu J., Wang D., Geetha N., Khawar K.M., Jogaiah S., Mujtaba M. (2021): Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review. Carbohydrate Polymers, 261: 117904. https://doi.org/10.1016/j.carbpol.2021.117904
 
Zargar V., Asghari M., Dashti A. (2015): A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2: 204–226. https://doi.org/10.1002/cben.201400025
 
Zhang H., Wang W., Yin H., Zhao X., Du Y. (2012): Oligochitosan induces programmed cell death in tobacco suspension cells. Carbohydrate Polymers, 87: 2270–2278. https://doi.org/10.1016/j.carbpol.2011.10.059
 
Zhang X., Li K., Xing R., Liu S., Li P. (2017): Metabolite profiling of wheat seedlings induced by chitosan: revelation of the enhanced carbon and nitrogen metabolism. Frontiers in Plant Science, 28: 02017. https://doi.org/10.3389/fpls.2017.02017
 
Zhou C., Yang Z., Zhang L., Dong E., He Z., Liu X., Wang C., Yang Y., Jiao J., Liu Y. (2020): Self-assembled nano-vesicles based on mPEG-NH2 modified carboxymethyl chitosan-graft-eleostearic acid conjugates for delivery of spinosad for Helicoverpa armigera. Reactive and Functional Polymers, 146: 104438. https://doi.org/10.1016/j.reactfunctpolym.2019.104438
 
Zong H., Liu S., Xing R., Chen X., Li P. (2017): Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicology and Environmental Safety, 138: 271–278. https://doi.org/10.1016/j.ecoenv.2017.01.009
 
Zou P., Li K., Liu S., Xing R., Qin Y., Yu H., Zhou M., Li P. (2015): Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydrate Polymers, 126: 62–69. https://doi.org/10.1016/j.carbpol.2015.03.028
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti