Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stress

Zemanová V., Pavlíková D., Pavlík M. (2020): Free amino acid regulation in fronds and roots of two Pteris cretica L. ferns under arsenic stress. Plant Soil Environ., 66: 483–492.


download PDF

In the present study, free amino acid (AA) regulation in the arsenic (As) hyperaccumulating ferns was evaluated in a pot experiment to determine the relationship between As stress and the characteristic change in metabolism of AAs. The ferns Pteris cretica cv. Albo-lineata (Pc-Al) and cv. Parkerii (Pc-Pa) were exposed to As treatments at 0, 20, 100, and 250 mg As/kg for 90 days. Greater As content, as well as higher biomass production, were identified in Pc-Al compared with Pc-Pa. Ferns showed changes in the stress metabolism of free AA homeostasis. These results indicate a disturbance in nitrogen metabolism and depletion of pool assimilated carbon metabolism. In the fronds and roots, Pc-Pa accumulated higher amounts of free AAs than Pc-Al. The total free AA content, as well as the ratio of the main AA family pathway (glutamate family), were increased by the accumulation of toxic As in the ferns. Results suggest that Pc-Al tolerates higher As doses better due to changes in AA biosynthesis; however, at higher As doses, Pc-Pa upregulated AA biosynthesis due to As toxicity. The most abundant free AAs of ferns was glutamine, which was enhanced by As. Furthermore, the ratios of selected individual free AAs revealed a characteristic phenotype difference between ferns.


Ashraf M.A., Maah M.J., Yusoff I. (2011): Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science and Technology, 8: 401–416.
Avezedo Neto A.D., Prisco J.T., Gomes-Filho E. (2009): Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. Journal of Plant Interactions, 4: 137–144.
Bai C., Reilly C.C., Wood B.W. (2006): Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiology, 140: 433–443.
Begum M.C., Islam M.S., Islam M., Amin R., Parvez M.S., Kabir A.H. (2016): Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 104: 266–277.
Caille N., Zhao F.J., McGrath S.P. (2005): Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytologist, 165: 755–761.
Campos N.V., Araújo T.O., Arcanjo-Silva S., Freitas-Silva L., Azevedo A.A., Nunes-Nesi A. (2016): Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress. Physiologia Plantarum, 157: 135–146.
Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H., Masclaux-Daubresse C. (2004): Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant and Cell Physiology, 45: 1681–1693.
Claveria R.J.R., Perez T.R., Apuan M.J.B., Apuan D.A., Perez R.E.C. (2019): Pteris melanocaulon Fée is an As hyperaccumulator. Chemosphere, 236: 124380.
Corea O.R.A., Ki C.Y., Cardenas C.L., Kim S.-J., Brewer S.E., Patten A.M., Davin L.B., Lewis N.G. (2012): Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins. Journal of Biological Chemistry, 287: 11446–11459.
Dwivedi S., Tripathi R.D., Tripathi P., Kumar A., Dave R., Mishra S., Singh R., Sharma D., Rai U.N., Chakrabarty D., Trivedi P.K., Adhikari B., Bag M.K., Dhankher O.P., Tuli R. (2010): Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environmental Science and Technology, 44: 9542–9549.
Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. (2015): Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015: 1–18.
Fayiga A.O., Ma L.Q. (2005): Arsenic uptake by two hyperaccumulator ferns from four arsenic contaminated soils. Water, Air, and Soil Pollution, 168: 71–89.
Finnegan P.M., Chen W.H. (2012): Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology, 3: 182.
Fritz C., Mueller C., Matt P., Feil R., Stitt M. (2006): Impact of the C-N status on the amino acid profile in tobacco source leaves. Plant, Cell and Environment, 29: 2055–2076.
García-Ríos M., Fujita T., LaRosa P.C., Locy R.D., Clithero J.M., Bressan R.A., Csonka L.N. (1997): Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proceeding of the National Academy of Sciences of the United States of America, 94: 8249–8254.
González-Orenga S., Ferrer-Gallego P.P., Laguna E., López-Gresa M.P., Donat-Torres M.P., Verdeguer M., Vicente O., Boscaiu M. (2019): Insights on salt tolerance of two endemic Limonium species from Spain. Metabolites, 9: 294.
Gulyás Z., Simon-Sarkadi L., Badics E., Novák A., Mednyánszky Z., Szalai G., Galiba G., Kocsy G. (2017): Redox regulation of free amino acid levels in Arabidopsis thaliana. Physiologia Plantarum, 159: 264–276.
Kirma M., Araújo W.L., Fernie A.R., Galili G. (2012): The multifaceted role of aspartate-family amino acids in plant metabolism. Journal of Experimental Botany, 63: 4995–5001.
Kovács Z., Simon-Sarkadi L., Sovány C., Kirsch K., Galiba G., Kocsy G. (2011): Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Science, 180: 61–68.
Kumar A., Dwivedi S., Singh R.P., Chakrabarty D., Mallick S., Trivedi P.K., Adhikari B., Tripathi R.D. (2014): Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biologia Plantarum, 58: 733–742.
Lea P.J., Sodek L., Parry M.A.J., Shewry P.R., Halford N.G. (2007): Asparagine in plants. Annals of Applied Biology, 150: 1–26.
Less H., Angelovici R., Tzin V., Galili G. (2010): Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants. Amino Acids, 39: 1023–1028.
Liu X.L., Yang C.Y., Zhang L.B., Li L.Z., Liu S.J., Yu J.B., You L.P., Zhou D., Xia C.H., Zhao J.M., Wu H.F. (2011): Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 20: 1422–1431.
Luongo T., Ma L.Q. (2005): Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. Plant and Soil, 277: 117–126.
Miflin B.J., Lea P.J. (1976): The pathway of nitrogen assimilation in plants. Phytochemistry, 15: 873–885.
Morot-Gaudry J.F., Job D., Lea P.J. (2001): Amino acid metabolism. In: Lea P.J., Morot-Gaudry J.F. (eds.): Plant Nitrogen. Berlin, Springer Verlag, 167–211. ISBN 978-3-662-04064-5
Ni W.T., Fahrendorf T., Ballance G.M., Lamb C.J., Dixon R.A. (1996): Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Molecular Biology, 30: 427–438.
Nikiforova V.J., Bielecka M., Gakière B., Krueger S., Rinder J., Kempa S., Morcuende R., Scheible W.-R., Hesse H., Hoefgen R. (2006): Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids, 30: 173–183.
Okumoto S., Funck D., Trovato M., Forlani G. (2016): Editorial: amino acids of the glutamate family: functions beyond primary metabolism. Frontiers in Plant Science, 7: 318.
Okunev R.V. (2019): Free amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water, Air, and Soil Pollution, 230: 253.
Pathare V., Srivastava S., Suprasanna P. (2013): Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiologiae Plantarum, 35: 3377–3389.
Pavlík M., Pavlíková D., Staszková L., Neuberg M., Kaliszová R., Száková J., Tlustoš P. (2010): The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicology and Environmental Safety, 73: 1309–1313.
Pavlík M., Pavlíková D., Zemanová V., Hnilička F., Urbanová V., Száková J. (2012): Trace elements present in airborne particulate matter-stressors of plant metabolism. Ecotoxicology and Environmental Safety, 79: 101–107.
Pavlíková D., Zemanová V., Pavlík M. (2017): The contents of free amino acids and elements in As-hyperaccumulator Pteris cretica and non-hyperaccumulator Pteris straminea during reversible senescence. Plant, Soil and Environment, 63: 455–460.
Pavlíková D., Zemanová V., Pavlík M., Dobrev P.I., Hnilička F., Motyka V. (2020): Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS One, 15: e0233055.
Planchet E., Limami A.M. (2015): Amino acid synthesis under abiotic stress. In: D’Mello J.P.F. (ed.): Amino Acids in Higher Plants. Wallingford, CAB International, 262–276. ISBN-13: 978-1780642635
Pratelli R., Pilot G. (2014): Regulation of amino acid metabolic enzymes and transporters in plants. Journal of Experimental Botany, 65: 5535–5556.
Raab A., Feldmann J., Meharg A.A. (2004): The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiology, 134: 1113–1122.
Rodríguez-Ruiz M., Aparicio-Chacón M.V., Palma J.M., Corpas F.J. (2019): Arsenate disrupts ion balance, sulfur and nitric oxide metabolisms in roots and leaves of pea (Pisum sativum L.) plants. Environmental and Experimental Botany, 161: 143–156.
Ros R., Muñoz-Bertomeu J., Krueger S. (2014): Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science, 19: 564–569.
Sharma S.S., Dietz K.-J. (2006): The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57: 711–726.
Tripathi P., Tripathi R.D., Singh R.P., Dwivedi S., Chakrabarty D., Trivedi P.K., Adhikari B. (2013): Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environmental Science and Pollution Research, 20: 884–896.
Tzin V., Galili G. (2010): New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 3: 956–972.
Wang W.Y., Xu M.Y., Wang G.P., Galili G. (2018): New insights into the metabolism of aspartate‑family amino acids in plant seeds. Plant Reproduction, 31: 203–211.
Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Vondráčková S. (2016): Responses to Cd stress in two Noccaea species (Noccaea praecox and Noccaea caerulescens) originating from two contaminated sites in Mežica, Slovenia and Redlschlag, Austria. Archives of Environmental Contamination and Toxicology, 70: 464–474.
Zemanová V., Popov M., Pavlíková D., Kotrba P., Hnilička F., Česká J., Pavlík M. (2020): Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biology, 20: 130.
Zhao F.J., Wang J.R., Barker J.H.A., Schat H., Bleeker P.M., McGrath S.P. (2003): The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytologist, 159: 403–410.
Zhu G.X., Xiao H.Y., Guo Q.J., Zhang Z.Y., Zhao J.J., Yang D. (2018): Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety, 158: 300–308.
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti