Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils

https://doi.org/10.17221/372/2018-PSECitation:Kulhánek M., Černý J., Balík J., Sedlář O., Suran P. (2018): Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils. Plant Soil Environ., 64: 455-462.
download PDF

Mehlich 3 is an extractant used worldwide for extracting bioavailable nutrients in soils; however, its extraction abilities for sulfur (S) are still not well described. The aim of this preliminary study was to compare the results of Mehlich 3 determined soil S fraction (SM3) with the results of sulfur fractionation, mainly focusing on bioavailable S (Sav – sum of water-extractable (Sw) and adsorbed (Sads) sulfur). Air dried soil samples from commonly used agricultural soils were chosen for the analyses. The following S fractions were determined: (i) Sw; (ii) Sads; (iii) Sav; (iv) 1 mol/L HCl extractable (SHCl); (v) estersulfate (Ses); (vi) organic (Sorg) and (vii) total (Stot). The median value of SM3 (18.3 mg/kg) was similar to Sav (17.9 mg/kg). From the correlation and regression analysis it is clear that SM3 results are in close relationship with Sav form. On the other hand, the relationships between SM3 and organic S (including SHCl) were very weak. Based on the obtained results it can be concluded that Mehlich 3 method has a good potential to determine bioavailable sulfur in commonly used agricultural soils. However, especially the plant response should be further studied to confirm this theory.

Alewell C. (1993): Effects of organic sulfur compounds on extraction and determination of inorganic sulfate. Plant and Soil, 149, 141-144  https://doi.org/10.1007/BF00010771
Balík J., Kulhánek M., Černý J., Száková J., Pavlíková D., Čermák P. (2009): Differences in soil sulfur fractions due to limitation of atmospheric deposition. Plant, Soil and Environment, 55, 344-352  https://doi.org/10.17221/101/2009-PSE
Blair Graeme J., Lefroy Rod D. B., Chinoim Nanthana, Anderson Geoffrey C. (1993): Sulfur soil testing. Plant and Soil, 155-156, 383-386  https://doi.org/10.1007/BF00025063
Bohn H.L., Barrow N.J., Rajan S.S.S., Parfitt R.L. (1986): Reactions of inorganic sulfur in soils. In: Tabatabai M.A. (ed.): Sulfur in Agriculture. Madison, American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 233–249.
BORTOLON L., GIANELLO C., WELTER S., ALMEIDA R.G.O., GIASSON E. (2011): Simultaneous Extraction of Phosphorus, Potassium, Calcium and Magnesium from Soils and Potassium Recommendations for Crops in Southern Brazil. Pedosphere, 21, 365-372  https://doi.org/10.1016/S1002-0160(11)60137-9
Boye Kristin, Eriksen Jørgen, Nilsson S. Ingvar, Mattsson Lennart (2010): Sulfur flow in a soil-plant system—effects of long-term treatment history and soil properties. Plant and Soil, 334, 323-334  https://doi.org/10.1007/s11104-010-0385-3
Casagrande A., Loos N.A. (1934): Areometric Method to Estimating of Soil and Other Materials Particle Size. Berlin, Springer, 60. (In German)
Chang Monica L., Thomas Grant W. (1963): A Suggested Mechanism for Sulfate Adsorption by Soils1, 2. Soil Science Society of America Journal, 27, 281-  https://doi.org/10.2136/sssaj1963.03615995002700030020x
ERIKSEN J (2005): Gross sulphur mineralisation–immobilisation turnover in soil amended with plant residues. Soil Biology and Biochemistry, 37, 2216-2224  https://doi.org/10.1016/j.soilbio.2005.04.003
Excel (2016): Microsoft Office Excel. USA, Microsoft Office Enterprise, release SP2.
Förster S., Welp G., Scherer H.W. (2012):   Sulfur specification in bulk soil as influenced by long-term application of mineral and organic fertilizers. Plant, Soil and Environment, 58, 316-321  https://doi.org/10.17221/32/2012-PSE
Gartley K. L., Sims J. T., Olsen C. T., Chu P. (2007): Comparison of soil test extractants used in mid-Atlantic United States. Communications in Soil Science and Plant Analysis, 33, 873-895  https://doi.org/10.1081/CSS-120003072
Jones J. Benton (2008): Universal soil extractants: Their composition and use. Communications in Soil Science and Plant Analysis, 21, 1091-1101  https://doi.org/10.1080/00103629009368292
Ketterings Quirine, Miyamoto Chie, Mathur Renuka Rao, Dietzel Kevin, Gami Sanjay (2011): A Comparison of Soil Sulfur Extraction Methods. Soil Science Society of America Journal, 75, 1578-  https://doi.org/10.2136/sssaj2010.0407
Kowalenko C.G., Bittman S., Neilsen G.H., Kenney E., Hunt D.E., Neilsen D. (2014): Potential for improving sulfur tests on agricultural soils in contrasting ecoregions of British Columbia, Canada. Geoderma Regional, 1, 10-20  https://doi.org/10.1016/j.geodrs.2014.06.001
Kowalenko C.G., Grimmett M. (2007): Chapter 23: Chemical characterization of soil sulfur. In: Carter M.R., Gregorich E.G. (eds.): Soil Sampling and Methods of Analysis. Florida, CRC Press, Taylor and Francis, 1224.
Kulhánek M., Balík J., Černý J., Sedlář O., Vašák F. (2016): Evaluating of soil sulfur forms changes under different fertilizing systems during long-term field experiments  . Plant, Soil and Environment, 62, 408-415  https://doi.org/10.17221/236/2016-PSE
Kulhánek M., Balík J., Černý J., Vaněk V. (2009): Evaluation of phosphorus mobility in soil using different extraction methods. Plant, Soil and Environment, 55, 267-272  https://doi.org/10.17221/43/2009-PSE
Kulhánek M., Balík J., Černý J., Vašák F., Shejbalová Š. (2014): Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients. Plant, Soil and Environment, 60, 151-157  https://doi.org/10.17221/930/2013-PSE
Kulhánek M., Černý J., Balík J., Vaněk V., Sedlář O. (2011): Influence of the nitrogen-sulfur fertilizing on the content of different sulfur fractions in soil. Plant, Soil and Environment, 57, 553-558  https://doi.org/10.17221/348/2011-PSE
Lehmann Johannes, Solomon Dawit, Zhao Fang-Jie, McGrath Steve P. (2008): Atmospheric SO 2 Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils. Environmental Science & Technology, 42, 3550-3555  https://doi.org/10.1021/es702315g
Matula J. (2008): Use of multinutrient soil tests for sulphur determination. Communications in Soil Science and Plant Analysis, 30, 1733-1746  https://doi.org/10.1080/00103629909370326
Mehlich A. (2008): Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416  https://doi.org/10.1080/00103628409367568
Monterroso C., Alvarez E., Fernández Marcos M. L. (1999): Evaluation of Mehlich 3 reagent as a multielement extractant in mine soils. Land Degradation & Development, 10, 35-47  https://doi.org/10.1002/(SICI)1099-145X(199901/02)10:1<35::AID-LDR319>3.0.CO;2-6
Morche L. (2008): S-fluxes and spatial alterations of inorganic and organic sulfur fractions in soil as well as their accumulation and depletion in the rhizosphere of agricultural crops by partial use of the radioisotope 35S. [Ph.D. thesis] Bonn, Rheinische Friedrich-Wilhelms-Universität, 321. (In German)
Ostatek-Boczynski Zofia A., Lee-Steere Peimaneh (2012): Evaluation of Mehlich 3 as a Universal Nutrient Extractant for Australian Sugarcane Soils. Communications in Soil Science and Plant Analysis, 43, 623-630  https://doi.org/10.1080/00103624.2012.643845
Rao T. Nagendra, Sharma Pritam K. (2008): Evaluation of Mehlich III as an extractant for available soil sulfur. Communications in Soil Science and Plant Analysis, 28, 1033-1046  https://doi.org/10.1080/00103629709369853
Rayment George E., Lyons David J. (2012): New, Comprehensive Soil Chemical Methods Book for Australasia. Communications in Soil Science and Plant Analysis, 43, 412-418  https://doi.org/10.1080/00103624.2012.641802
Ring R. A., Warman P. R., Stratton G. W., Eaton L. J. (2011): Determining Available Soil Phosphorus in Nova Scotia Blueberry Soils. Communications in Soil Science and Plant Analysis, 35, 2449-2463  https://doi.org/10.1081/LCSS-200030333
Scherer H.W. (2001): Sulphur in crop production — invited paper. European Journal of Agronomy, 14, 81-111  https://doi.org/10.1016/S1161-0301(00)00082-4
Wilhelm Scherer Heinrich (2009): Sulfur in soils. Journal of Plant Nutrition and Soil Science, 172, 326-335  https://doi.org/10.1002/jpln.200900037
Shan Xiao-quan, Chen Bin (1995): Determination of carbon-bonded sulfur in soils by hydriodic acid reduction and hydrogen peroxide oxidation. Fresenius' Journal of Analytical Chemistry, 351, 762-767  https://doi.org/10.1007/BF00323633
Xiao-quan Shan, Bin Chen, Long-zhu Jin, Yan Zheng, Xiao-ping Hou, Shi-fen Mou (2015): Determination of sulfur fractions in soils by sequential extraction, inductively coupled plasma-optical emission spectroscopy and ion chromatography. Chemical Speciation & Bioavailability, 4, 97-103  https://doi.org/10.1080/09542299.1992.11083186
Statistica (2016): ver. 13.2. Dell software. Available at: https://software.dell.com/products/statistica/
Tabatabai M.A. (1982): Sulfur. In: Page A.L., Freney J.R., Miller R.H. (ed.): Methods of Soil Analysis, Part 2. Chemical and Microbilogical Properties. Madison, American Society of Agronomy and Crop Science Society of America, 501–538.
Tisdale S.L., Nelson W.L., Beaton J.D., Havlin J.L. (1993): Soil Fertility and Fertilizers. 5th Edition. New York, Macmillan Publishing Company, 634.
Wang Jingkuan, Solomon Dawit, Lehmann Johannes, Zhang Xudong, Amelung Wulf (2006): Soil organic sulfur forms and dynamics in the Great Plains of North America as influenced by long-term cultivation and climate. Geoderma, 133, 160-172  https://doi.org/10.1016/j.geoderma.2005.07.003
WALKER D. R., DOORNENBAL G. (1972): SOIL SULFATE II. AS AN INDEX OF THE SULFUR AVAILABLE TO LEGUMES. Canadian Journal of Soil Science, 52, 261-266  https://doi.org/10.4141/cjss72-032
Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F. (2016): A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment, 61, 86-96  https://doi.org/10.17221/932/2014-PSE
Zbíral J. (1998): Comparison of some extracting methods for determination of sulphur in soils of the Czech Republic. Rostlinná Výroba, 45: 439–444. (In Czech)
Zbíral Jirí (2008): Determination of some inorganic anions in soil extracts and atmospheric deposition using capillary electrophoresis. Communications in Soil Science and Plant Analysis, 29, 1585-1592  https://doi.org/10.1080/00103629809370051
Zbíral Jiří, Němec Pavel (2005): Comparison of Mehlich 2, Mehlich 3, CAL, Schachtschabel, 0.01 M CaCl 2 and Aqua Regia Extractants for Determination of Potassium in Soils. Communications in Soil Science and Plant Analysis, 36, 795-803  https://doi.org/10.1081/CSS-200043404
Jiří Zbíral, Michaela Smatanová, Pavel Němec (2018): Sulphur status in agricultural soils determined using the Mehlich 3 method. Plant, Soil and Environment, 64, 255-259  https://doi.org/10.17221/142/2018-PSE
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti