Microbial consortia inoculants stimulate early growth of maize depending on nitrogen and phosphorus supply

https://doi.org/10.17221/382/2019-PSECitation:Bradáčová K., Kandeler E., Berger N., Ludewig U., Neumann G. (2020): Microbial consortia inoculants stimulate early growth of maize depending on nitrogen and phosphorus supply. Plant Soil Environ., 66: 105-112.
download PDF

Adoption of microbial consortia as plant growth-promoting microorganisms (PGPMs) instead of single-strain inoculants is discussed as an approach to increase the efficiency and flexibility of PGPM-assisted production strategies. This study provides the functional characterisation of a commercial microbial consortia product (MCP) in a series of greenhouse experiments with maize on a silty-loam field soil (pH 5.9). A 60%-increased abundance of bacteria that could be cultivated after rhizosphere extraction was measured after MCP inoculation at the end of the 42-days culture period. MCP inoculation did not stimulate shoot biomass production of maize fertilised with nitrate, but growth improvement was recorded in combination with stabilised ammonium, especially with reduced phosphorus (P) supply. The MCP inoculant improved the acquisition of ammonium-N but also increased shoot-P. MCP inoculation stimulated root length development under reduced P supply with stabilised ammonium by 52%. This was accompanied by the increased auxin production capacity of rhizosphere bacteria. C-, N-, and P-turnover in the rhizosphere were little affected by the MCP inoculation, as deduced from the analysis of activities of extracellular soil enzymes. The findings suggest that the form of N supply is crucial for the efficiency of plant-MCP interactions.

References:
Ahmed A., Hasnain S. (2010): Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum. Pure and Applied Chemistry, 82: 313–319. https://doi.org/10.1351/PAC-CON-09-02-06
 
Baldrian P. (2009): Microbial enzyme-catalyzed processes in soils and their analysis. Plant, Soil and Environment, 55: 370–378. https://doi.org/10.17221/134/2009-PSE
 
Bharucha U., Patel K., Trivedi U.B. (2013): Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agricultural Research, 2: 215–221. https://doi.org/10.1007/s40003-013-0065-7
 
Bradáčová K., Florea A.S., Bar-Tal A., Minz D., Yermiyahu U., Shawahna R., Kraut-Cohen J., Zolti A., Erel R., Dietel K., Weinmann M., Zimmermann B., Berger N., Ludewig U., Neumann G., Poşta G. (2019a): Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted tomato production? Agronomy, 9: 105. https://doi.org/10.3390/agronomy9020105
 
Bradáčová K., Sittinger M., Tietz K., Neuhäuser B., Kandeler E., Berger N., Ludewig U., Neumann G. (2019b): Maize inoculation with microbial consortia: contrasting effects on rhizosphere activities, nutrient acquisition and early growth in different soils. Microorganisms, 7: 329. https://doi.org/10.3390/microorganisms7090329
 
Broadbent P., Baker K.F., Waterworth Y. (1971): Bacteria and actinomycetes antogonistic to fungal root pathogens in Australian soils. Australian Journal of Biological Sciences, 24: 925–944. https://doi.org/10.1071/BI9710925
 
Campbell R.K. (2000): Reference sufficiency ranges for plant analysis in the southern region of the United States. Southern Cooperative Series Bulletin, North Carolina Department of Agriculture and Consumer Services – Agronomic Division, Raleigh, USA, 394: 1–121.
 
Chromiński K., Tkacz M. (2010): Comparison of outlier detection methods in biomedical data. Journal of Medical Informatics and Technologies, 16: 89–94.
 
Eltlbany N., Baklawa M., Ding G.C., Nassal D., Weber N., Kandeler E., Neumann G., Ludewig U., van Overbeek L., Smalla K. (2019): Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts. FEMS Microbiology Ecology, 95: 1–14. https://doi.org/10.1093/femsec/fiz124
 
Erlacher A., Cardinale M., Grosch R., Grube G., Berg G. (2014): The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Frontiers in Microbiology, 5: 175. https://doi.org/10.3389/fmicb.2014.00175
 
Gericke S., Kurmis B. (1952): Die kolorimetrische Phosphorsäurebestimmung mit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Zeitschrift Pflanzenernährung und Bodenkunde, 59: 235–247.
 
Glick B.R. (2014): Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169: 30–39. https://doi.org/10.1016/j.micres.2013.09.009
 
Glickmann E., Dessaux Y. (1995): A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61: 793–796. https://doi.org/10.1128/AEM.61.2.793-796.1995
 
Hadar Y. (2011): Suppressive compost: when plant pathology met microbial ecology. Phytoparasitica, 39: 311–314. https://doi.org/10.1007/s12600-011-0177-1
 
Higa T., Parr J.F. (1994): Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment. Japan, International Nature Farming Research Center Atami, 1–16.
 
Kloepper J.W., Zablotowicz R.M., Tipping E.M., Lifshitz R. (1991): Plant growth promotion mediated by bacteria rhizosphere colonizers. In: Keister D.L., Cregan P.B. (eds.): The Rhizosphere and Plant Growth. Beltsville, Kluwer Academic Publishers, 315–326. ISBN 978-94-010-5473-7
 
Lopez-Cervantes J., Thorpe D.T. (2013): Microbial composition comprising liquid fertilizer and processes for agricultural use. Agrinos, AS. United States Patent Application Publication US 2013/0255338A1.
 
Mpanga I.K., Dapaah H.K., Geistlinger J., Ludewig U., Neumann G. (2018): Soil type-dependent interactions of P-solubilizing microorganisms with organic and inorganic fertilizers mediate plant growth promotion in tomato. Agronomy, 8: 213. https://doi.org/10.3390/agronomy8100213
 
Mpanga I.K., Nkebiwe M.P., Kuhlmann M., Cozzolino V., Piccolo A., Geistlinger J., Berger N., Ludewig U., Neumann G. (2019a): The form of N supply determines plant growth promotion by
 
P-solubilizing microorganisms in maize. Microorganisms, 7: 38.
 
Mpanga I.K., Gomez-Genao N., Moradtalab N., Wanke D., Chrobaczek V., Ahmed A., Windisch S., Geistlinger J., Walker F., Ludeweig U., Neumann G. (2019b): The role of N form supply for PGPM-host plant interactions in maize. Journal of Plant Nutrition and Soil Science, 182: 908–920. https://doi.org/10.1002/jpln.201900133
 
Naglitsch F. (1996): Pseudomonas aeruginosa. In: Schultze E. (Hrsg.): Hygienisch-mikrobiologische Wasseruntersuchung. Jena, Gustav Fischer Verlag, S65–71. ISBN 9783527315697
 
Neumann G., Römheld V. (2007): The release of root exudates as affected by the plant physiological status. The rhizosphere: biochemistry and organic substances at the soil-plant interface. In: Pinton R., Varanini Z., Nannipieri P. (eds.): Books in Soils, Plants and the Environment. Boca Raton, CRC Press, 23–72. ISBN-13: 978-1420072808
 
Nuti M., Giovannetti G. (2015): Borderline products between bio-fertilizers/bio-effectors and plant protectants: the role of microbial consortia. Journal of Agricultural Science and Technology, 5: 305–315.
 
Patil N.B., Gajbhiye M., Ahiwale S.S., Gunjal A.B., Kapadnis B.P. (2011): Optimization of indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from sugarcane. International Journal of Environmental Sciences, 2: 295–302.
 
Patten C.L., Glick B.R. (2002): Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68: 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
 
Rajasekar S., Elango R. (2011): Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Current Botany, 8: 27–30.
 
Rana A., Saharan B., Nain L., Prasanna R., Shivay Y.S. (2012): Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science and Plant Nutrition, 58: 573–582. https://doi.org/10.1080/00380768.2012.716750
 
Sekar J., Raj R., Prabavathy V.R. (2016): Microbial consortia products for sustainable agriculture: commercialization and regulatory issues in India. In: Singh H.B., Sarma B., Keswani C. (eds.): Agriculturally Important Microorganisms Commercialization and Regulatory Requirements in Asia. Berlin, Heidelberg, Springer Science + Business Media Singapore, 107–131. ISBN 978-981-10-2576-1
 
Spaepen S., Vanderleyden J., Remans R. (2007): Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31: 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
 
Stemmer M. (2004): Multiple-substrate enzyme assays: a useful approach for profiling enzyme activity in soils? Soil Biology and Biochemistry, 36: 519–527. https://doi.org/10.1016/j.soilbio.2003.11.004
 
VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten e.V. Speyer, Germany). Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik Methodenbuch Band I Die Untersuchung von Böden. 4th Edition. Darmsatdt, VDLUFA Verlag, 1991.
 
Waschkies C., Schropp A., Marschner H. (1994): Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant and Soil, 162: 219–227. https://doi.org/10.1007/BF01347709
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti