Afzali S.F., Hajabbasi M.A., Shariatmadari H., Razmjoo K., Khoshgoflarmanesh A.H. (2006): Comparative adverse effects of PEG- or NaCl-induced osmotic stress on germination and early seedling growth of a potential medicinal plant Matricaria chamomilla. Pakistan Journal of Botany, 38: 1709–1714.
Allen Phil S., Meyer Susan E. (2002): Ecology and ecological genetics of seed dormancy in downy brome. Weed Science, 50, 241-247
https://doi.org/10.1614/0043-1745(2002)050[0241:EAEGOS]2.0.CO;2
Anderson R.L. (1996): Downy brome (Bromus tectorum) emergence variability in a semiarid region. Weed Technology, 10: 750–753.
Andersson L, Milberg P, Schutz W, Steinmetz O (2002): Germination characteristics and emergence time of annual Bromus species of differing weediness in Sweden. Weed Research, 42, 135-147
https://doi.org/10.1046/j.1365-3180.2002.00269.x
Asgarpour Rayhaneh, Ghorbani Reza, Khajeh-Hosseini Mohammad, Mohammadvand Elmira, Chauhan Bhagirath Singh (2015): Germination of Spotted Spurge (Chamaesyce maculata) Seeds in Response to Different Environmental Factors. Weed Science, 63, 502-510
https://doi.org/10.1614/WS-D-14-00162.1
Bewley J.D., Bradford K.J., Hilhost H.W., Nonogaki H. (2013): Seeds: Physiology of Development, Germination and Dormancy. 3rd Ed. New York, Springer.
Bradford Kent J. (2002): Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248-260
https://doi.org/10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2
Brant V., Neckář K., Zamboch M., Hlavičková D. (2005): Keimfähigkeit von Sommerzwischenfrüchten bei unterschiedlicher Wasserverfügbarkeit. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften, 17: 66–67.
Michel B. E., Kaufmann M. R. (1973): The Osmotic Potential of Polyethylene Glycol 6000. PLANT PHYSIOLOGY, 51, 914-916
https://doi.org/10.1104/pp.51.5.914
Chaturvedi P., Bisht D., Tiwari Pandey S. (2014): Effects of temperature, moisture and salinity on seed germination of Artemisia annua L. grown under Tarai conditions of Uttarakhand. Journal of Applied Horticulture, 16: 231–234.
Copeland L.O., McDonald M.B. (2001): Principles of Seed Science and Technology. 4th Ed. New York, Springer, 467.
Dahal Peetambar, Bradford Kent J. (1994): Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research, 4, -
https://doi.org/10.1017/S096025850000204X
Dastgheib F., Rolston M.P., Archie W.J. (2003): Chemical control of brome grasses (Bromus spp.) in cereals, New Zealand. Plant Protection, 56: 227–232.
DEL MONTE J P, DORADO J (2011): Effects of light conditions and after-ripening time on seed dormancy loss of Bromus diandrus Roth.. Weed Research, 51, 581-590
https://doi.org/10.1111/j.1365-3180.2011.00882.x
ELLIS R. H., HONG T. D., ROBERTS E. H. (1986): THE RESPONSE OF SEEDS OF BROMUS STERILIS L. AND BROMUS MOLLIS L. TO WHITE LIGHT OF VARYING PHOTON FLUX DENSITY AND PHOTOPERIOD. New Phytologist, 104, 485-496
https://doi.org/10.1111/j.1469-8137.1986.tb02915.x
García Addy L., Recasens Jordi, Forcella Frank, Torra Joel, Royo-Esnal Aritz (2013): Hydrothermal Emergence Model for Ripgut Brome (Bromus diandrus). Weed Science, 61, 146-153
https://doi.org/10.1614/WS-D-12-00023.1
Gehring K., Thyssen S., Festner T. (2006): Control of brome grasses (Bromus L. spp.) in winter cereals. Journal of Plant Diseases and Protection, Special Issue 20: 659–665.
Finch-Savage William E., Leubner-Metzger Gerhard (2006): Seed dormancy and the control of germination. New Phytologist, 171, 501-523
https://doi.org/10.1111/j.1469-8137.2006.01787.x
Forcella Frank, Benech Arnold Roberto L., Sanchez Rudolfo, Ghersa Claudio M. (2000): Modeling seedling emergence. Field Crops Research, 67, 123-139
https://doi.org/10.1016/S0378-4290(00)00088-5
Forcella Frank (1998): Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research, 8, -
https://doi.org/10.1017/S0960258500004116
GUILLEMIN J-P, GARDARIN A, GRANGER S, REIBEL C, MUNIER-JOLAIN N, COLBACH N (2013): Assessing potential germination period of weeds with base temperatures and base water potentials. Weed Research, 53, 76-87
https://doi.org/10.1111/wre.12000
Haliniarz Małgorzata, Kapeluszny Jan, Michałek Sławomir (2014): Germination of rye brome (Bromus secalinus L.) seeds under simulated drought and different thermal conditions. Acta Agrobotanica, 66, 157-164
https://doi.org/10.5586/aa.2013.062
HILTON JANET R. (1984): THE INFLUENCE OF DRY STORAGE TEMPERATURE ON THE RESPONSE OF BROMUS STERILIS L. SEEDS TO LIGHT. New Phytologist, 98, 129-134
https://doi.org/10.1111/j.1469-8137.1984.tb06102.x
Hulbert Lloyd C. (1955): Ecological Studies of Bromus tectorum and Other Annual Bromegrasses. Ecological Monographs, 25, 181-213
https://doi.org/10.2307/1943550
Jursík M., Kolářová M., Soukup J., Žďárková V. (2016): Effects of adjuvants and carriers on propoxycarbazone and pyroxsulam efficacy on Bromus sterilis in winter wheat . Plant, Soil and Environment, 62, 447-452
https://doi.org/10.17221/273/2016-PSE
Kirkham M.B. (2014): Principles of Soil and Plant Water Relations. 2nd Ed. Oxford, Academic Press Elsevier, 598.
Meyer Susan E., Allen Phil S. (2009): Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Science Research, 19, 225-
https://doi.org/10.1017/S0960258509990122
Michel B. E., Kaufmann M. R. (1973): The Osmotic Potential of Polyethylene Glycol 6000. PLANT PHYSIOLOGY, 51, 914-916
https://doi.org/10.1104/pp.51.5.914
NIELSEN OLE K., RITZ CHRISTIAN, STREIBIG JENS. C. (2004): Nonlinear Mixed-Model Regression to Analyze Herbicide Dose–Response Relationships
1. Weed Technology, 18, 30-37
https://doi.org/10.1614/WT-03-070R1
Patil V.N., Dadlani M. (2009): Tetrazolium test for seed viability and vigour. In: Renugadevi J. (ed.): Handbook of Seed Testing, Jodhopur, 209–241.
R Core Team (2016): R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: URL https://www.R-project.org/.
Shaban M. (2013): Effect of water and temperature on seed germination and emergence as a seed hydrothermal time model. International Journal of Advanced Biological and Biomedical Research, 1: 1686–1691.
Steadman K. J. (2004): Dormancy release during hydrated storage in Lolium rigidum seeds is dependent on temperature, light quality, and hydration status. Journal of Experimental Botany, 55, 929-937
https://doi.org/10.1093/jxb/erh099