Germination responses to water potential in Bromus sterilis L. under different temperatures and light regimes

https://doi.org/10.17221/406/2017-PSECitation:Valičková V., Hamouzová K., Kolářová M., Soukup J. (2017): Germination responses to water potential in Bromus sterilis L. under different temperatures and light regimes. Plant Soil Environ., 63: 368-374.
download PDF
Barren brome (Bromus sterilis L.) is a troublesome weed of winter cereals in western and central Europe and its control requires an exact estimation of emergence time. The study focused on the germination response of populations from the Czech Republic to water availability at different temperatures and under different light regimes. Seeds were able to germinate even at very low water potential (Ψ) close to the wilting point, but decreasing temperatures below 25°C and exposure to light decreased the germination percentage (GP) and prolonged the time to reach 50% germination (T50). At higher temperatures of 15, 20, and 25°C, seeds germinated up to a Ψ value of –1.5 MPa; however, the GP differed between light (0–3%) and darkness (50–75%). At the highest temperature of 25°C and germination in water, T50 was less than 1 day, but a decrease in Ψ to –1.5 MPa prolonged the T50 to
5 days; however, this occurred without any significant effect of light regime. With decreasing temperature and Ψ, seeds were more sensitive to the light regime and the disproportion between T50 in light and darkness increased. At a Ψ of less than –1.0 MPa, seeds needed twice as long for germination in light than in darkness when germinating at 20°C or 15°C. The results may be of value for the development of predictive models and for identifying times when weed control may be the most effective.
References:
Afzali S.F., Hajabbasi M.A., Shariatmadari H., Razmjoo K., Khoshgoflarmanesh A.H. (2006): Comparative adverse effects of PEG- or NaCl-induced osmotic stress on germination and early seedling growth of a potential medicinal plant Matricaria chamomilla. Pakistan Journal of Botany, 38: 1709–1714.
 
Allen Phil S., Meyer Susan E. (2002): Ecology and ecological genetics of seed dormancy in downy brome. Weed Science, 50, 241-247  https://doi.org/10.1614/0043-1745(2002)050[0241:EAEGOS]2.0.CO;2
 
Anderson R.L. (1996): Downy brome (Bromus tectorum) emergence variability in a semiarid region. Weed Technology, 10: 750–753.
 
Andersson L, Milberg P, Schutz W, Steinmetz O (2002): Germination characteristics and emergence time of annual Bromus species of differing weediness in Sweden. Weed Research, 42, 135-147  https://doi.org/10.1046/j.1365-3180.2002.00269.x
 
Asgarpour Rayhaneh, Ghorbani Reza, Khajeh-Hosseini Mohammad, Mohammadvand Elmira, Chauhan Bhagirath Singh (2015): Germination of Spotted Spurge (Chamaesyce maculata) Seeds in Response to Different Environmental Factors. Weed Science, 63, 502-510  https://doi.org/10.1614/WS-D-14-00162.1
 
Bewley J.D., Bradford K.J., Hilhost H.W., Nonogaki H. (2013): Seeds: Physiology of Development, Germination and Dormancy. 3rd Ed. New York, Springer.
 
Bradford Kent J. (2002): Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248-260  https://doi.org/10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2
 
Brant V., Neckář K., Zamboch M., Hlavičková D. (2005): Keimfähigkeit von Sommerzwischenfrüchten bei unterschiedlicher Wasserverfügbarkeit. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften, 17: 66–67.
 
Michel B. E., Kaufmann M. R. (1973): The Osmotic Potential of Polyethylene Glycol 6000. PLANT PHYSIOLOGY, 51, 914-916  https://doi.org/10.1104/pp.51.5.914
 
Chaturvedi P., Bisht D., Tiwari Pandey S. (2014): Effects of temperature, moisture and salinity on seed germination of Artemisia annua L. grown under Tarai conditions of Uttarakhand. Journal of Applied Horticulture, 16: 231–234.
 
Copeland L.O., McDonald M.B. (2001): Principles of Seed Science and Technology. 4th Ed. New York, Springer, 467.
 
Dahal Peetambar, Bradford Kent J. (1994): Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research, 4, -  https://doi.org/10.1017/S096025850000204X
 
Dastgheib F., Rolston M.P., Archie W.J. (2003): Chemical control of brome grasses (Bromus spp.) in cereals, New Zealand. Plant Protection, 56: 227–232.
 
DEL MONTE J P, DORADO J (2011): Effects of light conditions and after-ripening time on seed dormancy loss of Bromus diandrus Roth.. Weed Research, 51, 581-590  https://doi.org/10.1111/j.1365-3180.2011.00882.x
 
ELLIS R. H., HONG T. D., ROBERTS E. H. (1986): THE RESPONSE OF SEEDS OF BROMUS STERILIS L. AND BROMUS MOLLIS L. TO WHITE LIGHT OF VARYING PHOTON FLUX DENSITY AND PHOTOPERIOD. New Phytologist, 104, 485-496  https://doi.org/10.1111/j.1469-8137.1986.tb02915.x
 
García Addy L., Recasens Jordi, Forcella Frank, Torra Joel, Royo-Esnal Aritz (2013): Hydrothermal Emergence Model for Ripgut Brome (Bromus diandrus). Weed Science, 61, 146-153  https://doi.org/10.1614/WS-D-12-00023.1
 
Gehring K., Thyssen S., Festner T. (2006): Control of brome grasses (Bromus L. spp.) in winter cereals. Journal of Plant Diseases and Protection, Special Issue 20: 659–665.
 
Finch-Savage William E., Leubner-Metzger Gerhard (2006): Seed dormancy and the control of germination. New Phytologist, 171, 501-523  https://doi.org/10.1111/j.1469-8137.2006.01787.x
 
Forcella Frank, Benech Arnold Roberto L., Sanchez Rudolfo, Ghersa Claudio M. (2000): Modeling seedling emergence. Field Crops Research, 67, 123-139  https://doi.org/10.1016/S0378-4290(00)00088-5
 
Forcella Frank (1998): Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research, 8, -  https://doi.org/10.1017/S0960258500004116
 
GUILLEMIN J-P, GARDARIN A, GRANGER S, REIBEL C, MUNIER-JOLAIN N, COLBACH N (2013): Assessing potential germination period of weeds with base temperatures and base water potentials. Weed Research, 53, 76-87  https://doi.org/10.1111/wre.12000
 
Haliniarz Małgorzata, Kapeluszny Jan, Michałek Sławomir (2014): Germination of rye brome (Bromus secalinus L.) seeds under simulated drought and different thermal conditions. Acta Agrobotanica, 66, 157-164  https://doi.org/10.5586/aa.2013.062
 
HILTON JANET R. (1984): THE INFLUENCE OF DRY STORAGE TEMPERATURE ON THE RESPONSE OF BROMUS STERILIS L. SEEDS TO LIGHT. New Phytologist, 98, 129-134  https://doi.org/10.1111/j.1469-8137.1984.tb06102.x
 
Hulbert Lloyd C. (1955): Ecological Studies of Bromus tectorum and Other Annual Bromegrasses. Ecological Monographs, 25, 181-213  https://doi.org/10.2307/1943550
 
Jursík M., Kolářová M., Soukup J., Žďárková V. (2016): Effects of adjuvants and carriers on propoxycarbazone and pyroxsulam efficacy on Bromus sterilis in winter wheat  . Plant, Soil and Environment, 62, 447-452  https://doi.org/10.17221/273/2016-PSE
 
Kirkham M.B. (2014): Principles of Soil and Plant Water Relations. 2nd Ed. Oxford, Academic Press Elsevier, 598.
 
Meyer Susan E., Allen Phil S. (2009): Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Science Research, 19, 225-  https://doi.org/10.1017/S0960258509990122
 
Michel B. E., Kaufmann M. R. (1973): The Osmotic Potential of Polyethylene Glycol 6000. PLANT PHYSIOLOGY, 51, 914-916  https://doi.org/10.1104/pp.51.5.914
 
NIELSEN OLE K., RITZ CHRISTIAN, STREIBIG JENS. C. (2004): Nonlinear Mixed-Model Regression to Analyze Herbicide Dose–Response Relationships 1. Weed Technology, 18, 30-37  https://doi.org/10.1614/WT-03-070R1
 
Patil V.N., Dadlani M. (2009): Tetrazolium test for seed viability and vigour. In: Renugadevi J. (ed.): Handbook of Seed Testing, Jodhopur, 209–241.
 
R Core Team (2016): R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: URL https://www.R-project.org/.
 
Shaban M. (2013): Effect of water and temperature on seed germination and emergence as a seed hydrothermal time model. International Journal of Advanced Biological and Biomedical Research, 1: 1686–1691.
 
Steadman K. J. (2004): Dormancy release during hydrated storage in Lolium rigidum seeds is dependent on temperature, light quality, and hydration status. Journal of Experimental Botany, 55, 929-937  https://doi.org/10.1093/jxb/erh099
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti