Nitrogen addition turns a temperate peatland from a near-zero source into a strong sink of nitrous oxide

https://doi.org/10.17221/411/2021-PSECitation:

Yi B.L., Lu F., Bu Z.-J. (2022): Nitrogen addition turns a temperate peatland from a near-zero source into a strong sink of nitrous oxide. Plant Soil Environ., 68: 49–58.

 

download PDF

Peatlands, as important global nitrogen (N) pools, are potential sources of nitrous oxide (N2O) emissions. We measured N2O flux dynamics in Hani peatland in a growing season with simulating warming and N addition for 12 years in the Changbai Mountains, Northeastern China, by using static chamber-gas chromatography. We hypothesised that warming and N addition would accelerate N2O emissions from the peatland. In a growing season, the peatland under natural conditions showed near-zero N2O fluxes and warming increased N2O emissions but N addition greatly increased N2O absorption compared with control. There was no interaction between warming and N addition on N2O fluxes. Pearson correlation analysis showed that water table depth was one of the main environmental factors affecting N2O fluxes and a positive relationship between them was observed. Our study suggests that the N2O source function in natural temperate peatlands maybe not be so significant as we expected before; warming can increase N2O emissions, but a high dose of N input may turn temperate peatlands to be strong sinks of N2O, and global change including warming and nitrogen deposition can alter N2O fluxes via its indirect effect on hydrology and vegetation in peatlands.

 

References:
Aerts R., Wallen B., Malmer N. (1992): Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80: 131–140. https://doi.org/10.2307/2261070
 
Alm J., Schulman L., Walden J., Nykänen H., Martikainen P.J., Silvola J. (1999): Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 80: 161–174. https://doi.org/10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2
 
Amha Y., Bohne H. (2011): Denitrification from the horticultural peats: effects of pH, nitrogen, carbon, and moisture contents. Biology and Fertility of Soils, 47: 293–302. https://doi.org/10.1007/s00374-010-0536-y
 
Bowden W.B. (1986): Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets. Biogeochemistry, 2: 249–279. https://doi.org/10.1007/BF02180161
 
Bragazza L., Tahvanainen T., Kutnar L., Rydin H., Limpens J., Hájek M., Grosvernier P., Hájek T., Hajkova P., Hansen I. (2004): Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163: 609–616. https://doi.org/10.1111/j.1469-8137.2004.01154.x
 
Bu Z.-J., Rydin H., Chen X. (2011): Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia, 166: 555–563. https://doi.org/10.1007/s00442-010-1880-1
 
Bubier J.L., Moore T.R., Bledzki L.A. (2007): Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13: 1168–1186. https://doi.org/10.1111/j.1365-2486.2007.01346.x
 
Buchen C., Roobroeck D., Augustin J., Behrendt U., Boeckx P., Ulrich A. (2019): High N2O consumption potential of weakly disturbed fen mires with dissimilar denitrifier community structure. Soil Biology and Biochemistry, 130: 63–72. https://doi.org/10.1016/j.soilbio.2018.12.001
 
Burgin A.J., Groffman P.M. (2012): Soil O2 controls denitrification rates and N2O yield in a riparian wetland. Journal of Geophysical Research-Biogeosciences, 117: 1–10. https://doi.org/10.1029/2011JG001799
 
Chaddy A., Melling L., Ishikura K., Hatano R. (2019): Soil N2O emissions under different N rates in an oil palm plantation on tropical peatland. Agriculture, 9: 1–18. https://doi.org/10.3390/agriculture9100213
 
Chen X., McGowan S., Bu Z.J., Yang X.D., Cao Y.M., Bai X., Zeng L.H., Liang J., Qiao Q.L. (2020): Diatom-based water-table reconstruction in Sphagnum peatlands of northeastern China. Water Research, 174: 115648. https://doi.org/10.1016/j.watres.2020.115648
 
Cheng S., Wang L., Fang H., Yu G., Yang X., Li X., Si G., Geng J., He S., Yu G. (2016): Nonlinear responses of soil nitrous oxide emission to multi-level nitrogen enrichment in a temperate needle-broadleaved mixed forest in Northeast China. Catena, 147: 556–563. https://doi.org/10.1016/j.catena.2016.08.010
 
Clymo R.S., Hayward P.M. (1982): The ecology of Sphagnum. In: Smith A.J.E. (ed.): Bryophyte Ecology. Dordrecht, Springer, 229–289. ISBN: 978-94-009-5891-3
 
Couwenberg J., Dommain R., Joosten H. (2010): Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology, 16: 1715–1732. https://doi.org/10.1111/j.1365-2486.2009.02016.x
 
Cui Q., Song C., Wang X., Shi F., Yu X., Tan W. (2018): Effects of warming on N2O fluxes in a boreal peatland of permafrost region, Northeast China. Science of the Total Environment, 616: 427–434. https://doi.org/10.1016/j.scitotenv.2017.10.246
 
Dinsmore K.J., Skiba U.M., Billett M.F., Rees R.M. (2009): Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil, 318: 229–242. https://doi.org/10.1007/s11104-008-9832-9
 
Eickenscheidt T., Heinichen J., Augustin J., Freibauer A., Droesler M. (2014): Nitrogen mineralization and gaseous nitrogen losses from waterlogged and drained organic soils in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Biogeosciences, 11: 2961–2976. https://doi.org/10.5194/bg-11-2961-2014
 
Frasier R., Ullah S., Moore T.R. (2010): Nitrous oxide consumption potentials of well-drained forest soils in Southern Quebec, Canada. Geomicrobiology Journal, 27: 53–60. https://doi.org/10.1080/01490450903232199
 
Frolking S., Talbot J., Jones M.C., Treat C.C., Kauffman J.B., Tuittila E.-S., Roulet N. (2011): Peatlands in the Earth’s 21st century climate system. Environmental Reviews, 19: 371–396. https://doi.org/10.1139/a11-014
 
Gong Y., Wu J. (2021): Vegetation composition modulates the interaction of climate warming and elevated nitrogen deposition on nitrous oxide flux in a boreal peatland. Global Change Biology, 27: 5588–5598. https://doi.org/10.1111/gcb.15865
 
Gong Y., Wu J., Vogt J., Le T.B. (2019): Warming reduces the increase in N2O emission under nitrogen fertilization in a boreal peatland. Science of the Total Environment, 664: 72–78. https://doi.org/10.1016/j.scitotenv.2019.02.012
 
Gong Y., Wu J., Vogt J., Ma W. (2020): Greenhouse gas emissions from peatlands under manipulated warming, nitrogen addition, and vegetation composition change: a review and data synthesis. Environmental Reviews, 28: 428–437. https://doi.org/10.1139/er-2019-0064
 
Gong Y., Wu J.H., Vogt J., Le T.B., Yuan T. (2018): Combination of warming and vegetation composition change strengthens the environmental controls on N2O fluxes in a boreal peatland. Atmosphere, 9: 480. https://doi.org/10.3390/atmos9120480
 
Gorham E. (1991): Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1: 182–195. https://doi.org/10.2307/1941811
 
Hall B.D., Dutton G.S., Elkins J.W. (2007): The NOAA nitrous oxide standard scale for atmospheric observations. Journal of Geophysical Research-Atmospheres, 112: D09305. https://doi.org/10.1029/2006JD007954
 
Hatano R. (2019): Impact of land use change on greenhouse gases emissions in peatland: a review. International Agrophysics, 33: 167–173. https://doi.org/10.31545/intagr/109238
 
Hu J., Inglett K.S., Wright A.L., Reddy K.R. (2016): Nitrous oxide production and reduction in seasonally-flooded cultivated peatland soils. Soil Science Society of America Journal, 80: 783–793. https://doi.org/10.2136/sssaj2015.10.0381
 
Kachenchart B., Jones D.L., Gajaseni N., Edwards-Jones G., Limsakul A. (2012): Seasonal nitrous oxide emissions from different land uses and their controlling factors in a tropical riparian ecosystem. Agriculture, Ecosystems and Environment, 158: 15–30. https://doi.org/10.1016/j.agee.2012.05.008
 
Lamers L.P.M., Bobbink R., Roelofs J.G.M. (2000): Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6: 583–586. https://doi.org/10.1046/j.1365-2486.2000.00342.x
 
Larmola T., Bubier J.L., Kobyljanec C., Basiliko N., Juutinen S., Humphreys E., Preston M., Moore T.R. (2013): Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology, 19: 3729–3739. https://doi.org/10.1111/gcb.12328
 
Le T.B., Wu J., Gong Y., Vogt J. (2021): Graminoid removal reduces the increase in N2O fluxes due to nitrogen fertilization in a boreal peatland. Ecosystems, 24: 261–271. https://doi.org/10.1007/s10021-020-00516-5
 
Leeson S.R., Levy P.E., van Dijk N., Drewer J., Robinson S., Jones M.R., Kentisbeer J., Washbourne I., Sutton M.A., Sheppard L.J. (2017): Nitrous oxide emissions from a peatbog after 13 years of experimental nitrogen deposition. Biogeosciences, 14: 5753–5764. https://doi.org/10.5194/bg-14-5753-2017
 
Leppelt T., Dechow R., Gebbert S., Freibauer A., Lohila A., Augustin J., Droesler M., Fiedler S., Glatzel S., Hoeper H., Jaerveoja J., Laerke P.E., Maljanen M., Mander U., Maekiranta P., Minkkinen K., Ojanen P., Regina K., Stromgren M. (2014): Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences, 11: 6595–6612. https://doi.org/10.5194/bg-11-6595-2014
 
Li T., Bu Z.J., Liu W.Y., Zhang M.Y., Peng C.H., Zhu Q.A., Shi S.W., Wang M. (2019): Weakening of the "enzymatic latch" mechanism following long-term fertilization in a minerotrophic peatland. Soil Biology and Biochemistry, 136: 107528. https://doi.org/10.1016/j.soilbio.2019.107528
 
Liimatainen M., Martikainen P.J., Maljanen M.J.S.B. (2014): Why granulated wood ash decreases N2O production in boreal acidic peat soil? Soil Biology and Biochemistry, 79: 140–148. https://doi.org/10.1016/j.soilbio.2014.09.016
 
Liimatainen M., Voigt C., Martikainen P.J., Hytonen J., Regina K., Oskarsson H., Maljanen M. (2018): Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, 122: 186–195. https://doi.org/10.1016/j.soilbio.2018.04.006
 
Limpens J., Heijmans M., Berendse F. (2006): The nitrogen cycle in boreal peatlands. In: Wieder R.K., Vitt D.H. (eds.): Boreal Peatland Ecosystem. Berlin, Springer, 195–230. ISBN: 978-3-540-31913-9
 
Liu C., Bu Z., Ma J., Yuan M., Feng L., Liu S. (2015): Comparative study on the response of deciduous and evergreen shrubs to nitrogen and phosphorus input in Hani Peatland of Changbai Mountains. Chinese Journal of Ecology, 34: 2711–2719.
 
Lund M., Christensen T.R., Mastepanov M., Lindroth A., Strom L. (2009): Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences, 6: 2135–2144. https://doi.org/10.5194/bg-6-2135-2009
 
Malhi S.S., McGill W.B., Nyborg M. (1990): Nitrate losses in soils: effect of temperature, moisture and substrate concentration. Soil Biology and Biochemistry, 22: 733–737. https://doi.org/10.1016/0038-0717(90)90150-X
 
Maljanen M., Liimatainen M., Hytonen J., Martikainen P.J. (2014): The effect of granulated wood-ash fertilization on soil properties and greenhouse gas (GHG) emissions in boreal peatland forests. Boreal Environment Research, 19: 295–309.
 
Maljanen M., Sigurdsson B.D., Guomundsson J., Oskarsson H., Huttunen J.T., Martikainen P.J. (2010): Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps. Biogeosciences, 7: 2711–2738. https://doi.org/10.5194/bg-7-2711-2010
 
Martikainen P.J., Nykänen H., Crill P., Silvola J. (1993): Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366: 51–53. https://doi.org/10.1038/366051a0
 
Minkkinen K., Ojanen P., Koskinen M., Penttilä T. (2020): Nitrous oxide emissions of undrained, forestry-drained, and rewetted boreal peatlands. Forest Ecology and Management, 478: 118494. https://doi.org/10.1016/j.foreco.2020.118494
 
Moore T.R., Knorr K.-H., Thompson L., Roy C., Bubier J.L. (2019): The effect of long-term fertilization on peat in an ombrotrophic bog. Geoderma, 343: 176–186. https://doi.org/10.1016/j.geoderma.2019.02.034
 
Nykänen H., Vasander H., Huttunen J.T., Martikainen P.J. (2002): Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant and Soil, 242: 147–155. https://doi.org/10.1023/A:1019658428402
 
Oktarita S., Hergoualc’h K., Anwar S., Verchot L.V. (2017): Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environmental Research Letters, 12: 104007. https://doi.org/10.1088/1748-9326/aa80f1
 
Ravishankara A.R., Daniel J.S., Portmann R.W. (2009): Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326: 123–125. https://doi.org/10.1126/science.1176985
 
Regina K., Nykänen H., Silvola J., Martikainen P.J. (1996): Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry, 35: 401–418. https://doi.org/10.1007/BF02183033
 
Regina K., Silvola J., Martikainen P.J. (2010): Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biology, 5: 183–189. https://doi.org/10.1046/j.1365-2486.1999.00217.x
 
Rückauf U., Augustin J., Russow R., Merbach W. (2004): Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biology and Biochemistry, 36: 77–90. https://doi.org/10.1016/j.soilbio.2003.08.021
 
Rudolph H., Voigt J.U. (2010): Effects of NH4+-N and NO3+-N on growth and metabolism of Sphagnum magellanicum. Physiologia Plantarum, 66: 339–343. https://doi.org/10.1111/j.1399-3054.1986.tb02429.x
 
Sosulski T., Stępień W., Wąs A., Szymańska M. (2020): N2O and CO2 emissions from bare soil: effect of fertilizer management. Agriculture, 10: 602. https://doi.org/10.3390/agriculture10120602
 
Tedeschi A., De Marco A., Polimeno F., Di Tommasi P., Maglione G., Ottaiano L., Arena C., Magliulo V., Vitale L. (2021): Effects of the fertilizer added with DMPP on soil nitrous oxide emissions and microbial functional diversity. Agriculture, 11: 12. https://doi.org/10.3390/agriculture11010012
 
Teepe R., Brumme R., Beese F. (2001): Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology and Biochemistry, 33: 1269–1275. https://doi.org/10.1016/S0038-0717(01)00084-0
 
Updegraff K., Pastor J., Bridgham S.D., Johnston C.A. (1995): Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications, 5: 151–163. https://doi.org/10.2307/1942060
 
Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D. (1997): Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7: 737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
 
Vitt D.H., Wieder K., Halsey L.A., Turetsky M. (2003): Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist, 106: 235–245. https://doi.org/10.1639/0007-2745(2003)106[0235:ROSFTN]2.0.CO;2
 
Voigt C., Lamprecht R.E., Marushchak M.E., Lind S.E., Novakovskiy A., Aurela M., Martikainen P.J., Biasi C. (2017): Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23: 3121–3138. https://doi.org/10.1111/gcb.13563
 
Wassen M.J., Veterink H., Deswart E. (1995): Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science, 6: 5–16. https://doi.org/10.2307/3236250
 
Wieder R.K., Vitt D.H., Vile M.A., Graham J.A., Hartsock J.A., Popma J.M.A., Fillingim H., House M., Quinn J.C., Scott K.D., Petix M., McMillen K.J. (2020): Experimental nitrogen addition alters structure and function of a boreal poor fen: implications for critical loads. Science of the Total Environment, 733: 138619. https://doi.org/10.1016/j.scitotenv.2020.138619
 
Woodin S.J., Lee J.A. (1987): The fate of some components of acidic deposition in ombrotrophic mires. Environmental Pollution, 45: 61–72. https://doi.org/10.1016/0269-7491(87)90016-9
 
Yu J., Liu J., Sun Z., Sun W., Wang J., Wang G., Chen X. (2010): The fluxes and controlling factors of N2O and CH4 emissions from freshwater marsh in Northeast China. Science China-Earth Sciences, 53: 700–709. https://doi.org/10.1007/s11430-010-0003-5
 
Zhang M., Bu Z., Jiang M., Wang S., Liu S., Chen X., Hao J., Liao W. (2019): The development of Hani peatland in the Changbai mountains (NE China) and its response to the variations of the East Asian summer monsoon. Science of the Total Environment, 692: 818–832. https://doi.org/10.1016/j.scitotenv.2019.07.287
 
Zhou W., Guo Y., Zhu B., Wang X., Zhou L., Yu D., Dai L. (2015): Seasonal variations of nitrogen flux and composition in a wet deposition forest ecosystem on Changbai Mountain. Acta Ecologica Sinica, 35: 158–164.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti