Effects of wheat root exudates on bacterial communities in the rhizosphere of watermelon

https://doi.org/10.17221/419/2021-PSECitation:

Shi J.B., Gong X.Y., Khashi u Rahman M., Tian Q., Zhou X.G., Wu F.Z. (2021): Effects of wheat root exudates on bacterial communities in the rhizosphere of watermelon. Plant Soil Environ., 67: 721–728.

 

download PDF

In this study, we investigated the effects of wheat root exudates on soil bacterial communities in the watermelon rhizosphere using quantitative PCR and Illumina MiSeq sequencing. The qPCR results showed that wheat root exudates significantly increased the abundance of total bacteria, Pseudomonas, Bacillus and Streptomyces spp. Illumina MiSeq sequencing results showed that wheat root exudates significantly changed the bacterial community structure and composition. These results indicated that plant root exudates play a role in plant-to-plant signalling, strongly affect the microbial community composition.

 

References:
Ankati S., Podile A.R. (2019): Metabolites in the root exudates of groundnut change during interaction with plant growth promoting rhizobacteria in a strain-specific manner. Journal of Plant Physiology, 243: 153057. https://doi.org/10.1016/j.jplph.2019.153057
 
Azadi D., Shojaei H. (2020): Biodegradation of polycyclic aromatic hydrocarbons, phenol and sodium sulfate by Nocardia species isolated and characterized from Iranian ecosystems. Scientific Reports, 10: 21860. https://doi.org/10.1038/s41598-020-78821-1
 
Couillerot O., Prigent-Combaret C., Caballero-Mellado J., Moënne-Loccoz Y. (2009): Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology, 48: 505–512. https://doi.org/10.1111/j.1472-765X.2009.02566.x
 
Derakhshani H., Tun H.M., Khafipour E. (2016): An extended single-index multiplexed 16S rRNA sequencing for microbial community analysis on MiSeq illumina platforms. Journal of Basic Microbiology, 56: 321–326. https://doi.org/10.1002/jobm.201500420
 
Edgar R.C. (2013): UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996–998. https://doi.org/10.1038/nmeth.2604
 
Eisenhauer N., Milcu A., Sabais A.C.W., Bessler H., Brenner J., Engels C., Klarner B., Maraun M., Partsch S., Roscher C., Schonert F., Temperton V.M., Thomisch K., Weigelt A., Weisser W.W., Scheu S. (2011): Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. Plos One, 6: e16055. https://doi.org/10.1371/journal.pone.0016055
 
Fang J.H., Dong J., Li C.C., Chen H., Wang L.F., Lyu T.S., He H., Liu J. (2021): Response of microbial community composition and function to emergent plant rhizosphere of a constructed wetland in northern China. Applied Soil Ecology, 168: 104141. https://doi.org/10.1016/j.apsoil.2021.104141
 
Feng H.C., Fu R.X., Hou X.Q., Lv Y., Zhang N., Liu Y.P., Xu Z.H., Miao T.Z., Krell T., Shen Q.R., Zhang R.F. (2021): Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root-microbe rhizosphere interactions. International Journal of Molecular Sciences, 22: 6655. https://doi.org/10.3390/ijms22136655
 
Fontaine S., Mariotti A., Abbadie L. (2003): The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry, 35: 837–843. https://doi.org/10.1016/S0038-0717(03)00123-8
 
Ghorbani R., Wilcockson S., Koocheki A., Leifert C. (2008): Soil management for sustainable crop disease control: a review. Environmental Chemistry Letters, 6: 149–162. https://doi.org/10.1007/s10311-008-0147-0
 
Hao W.Y., Ren L.X., Ran W., Shen Q.R. (2010): Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum. Plant and Soil, 336: 485–497. https://doi.org/10.1007/s11104-010-0505-0
 
Levy A., Gonzalez I.S., Mittelviefhaus M., Clingenpeel S., Paredes S.H., Miao J.M., Wang K.R., Devescovi G., Stillman K., Monteiro F., Alvarez B.R., Lundberg A.D.S., Lu T.Y., Lebeis S., Jin Z., McDonald M., Klein A.P., Feltcher M.E., Rio T.G., Grant S.R., Doty S.L., Ley R.E., Zhao B.Y., Venturi V., Pelletier D.A., Vorholt J.A., Tringe S.G., Woyke T., Dangl J.L. (2018): Genomic features of bacterial adaptation to plants. Nature Genetics, 50: 138–150. https://doi.org/10.1038/s41588-017-0012-9
 
Ling N., Raza W., Ma J.H., Huang Q.W., Shen Q.R. (2011): Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. European Journal of Soil Biology, 47: 374–379. https://doi.org/10.1016/j.ejsobi.2011.08.009
 
Lv H.F., Cao H.S., Nawaz M.A., Sohail H., Huang Y., Cheng F., Kong Q.S., Bie Z.L. (2018): Wheat intercropping enhances the resistance of watermelon to Fusarium wilt. Frontiers in Plant Science, 9: 696. https://doi.org/10.3389/fpls.2018.00696
 
Oksanen J.B.F., Kindt R., Legendre P., Minchin P.R., O’Hara R., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. (2014): Vegan: Community Ecology. Package, R Package Version 2.
 
Rahman M.K.U., Zhou X.G., Wu F.Z. (2019): The role of root exudates, CMNs, and VOCs in plant-plant interaction. Journal of Plant Interactions, 14: 630–636. https://doi.org/10.1080/17429145.2019.1689581
 
Ren L.X., Su S.M., Yang X.M., Xu Y.C., Huang Q.W., Shen Q.R. (2008): Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology and Biochemistry, 40: 834–844. https://doi.org/10.1016/j.soilbio.2007.11.003
 
Ren L.X., Huo H.W., Zhang F., Hao W.Y., Xiao L., Dong C.X., Xu G.H. (2016): The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense. Plant Signaling and Behavior, 11: e1187357. https://doi.org/10.1080/15592324.2016.1187357
 
Stringlis I.A., Yu K., Feussner K., De Jonge R., Van Bentum S., Van Verk M.C., Berendsen R.L., Bakker P.A.H.M., Feussner I., Pieterse C.M.J. (2018): MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the United States of America, 155: E5213–E5222. https://doi.org/10.1073/pnas.1722335115
 
Sun H.J., Zhang H.L., Powlson D.S., Min J., Shi W.M. (2015): Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Research, 173: 1–7. https://doi.org/10.1016/j.fcr.2014.12.012
 
Vora S.M., Joshi P., Belwalkar M., Archana G. (2021): Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea-maize intercropping system. Rhizosphere, 18: 100331. https://doi.org/10.1016/j.rhisph.2021.100331
 
Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. (2007): Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbioloy, 73: 5261–5267. https://doi.org/10.1128/AEM.00062-07
 
Xu W.H., Liu D., Wu F.Z., Liu S.W. (2015): Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. European Journal of Plant Pathology, 141: 209–216. https://doi.org/10.1007/s10658-014-0528-0
 
Yue Y., Liu Y.J., Wang J.C., Vukanti R., Ge Y. (2021): Enrichment of potential degrading bacteria accelerates removal of tetracyclines and their epimers from cow manure biochar amended soil. Chemosphere, 278: 130358. https://doi.org/10.1016/j.chemosphere.2021.130358
 
Zamioudis C., Pieterse C.M.J. (2012): Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions: MPMI, 25: 139–50. https://doi.org/10.1094/MPMI-06-11-0179
 
Zhao Y.Y., Duan F.A., Cui Z.J., Hong J.l., Ni S.Q. (2021): Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: abundance, structure, co-occurrence network and functionality. Science of The Total Environment, 786: 147338. https://doi.org/10.1016/j.scitotenv.2021.147338
 
Zhou X.G., Liu J., Wu F.Z. (2017): Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 415: 507–520. https://doi.org/10.1007/s11104-017-3181-5
 
Zhou X.G., Zhang J.H., Pan D.D., Ge X., Jin X., Chen S.C., Wu F.Z. (2018): p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biology and Fertility of Soils, 54: 363–372. https://doi.org/10.1007/s00374-018-1265-x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti