Element contents and health risk assessment in wild edible mushrooms of Bosnia and Herzegovina

https://doi.org/10.17221/423/2021-PSECitation:

Salihović M., Pazalja M., Šapčanin A., Dojčinović B.P., Špirtović-Halilović S. (2021): Element contents and health risk assessment in wild edible mushrooms of Bosnia and Herzegovina. Plant Soil Environ., 67: 668–677.

 

download PDF

The content of macro- and microelements in dry samples of mushrooms of the species Macrolepiota procera, Boletus edulis and Cantharellus cibarius, collected at different areas in Bosnia and Herzegovina, was determined using the ICP-OES method (inductively coupled plasma optical emission spectrometry). Of the macroelements, K is the most represented, followed by S, P, Mg, and the least represented Ca and Na. Zn is the most represented of the essential microelements, followed by Fe, Se, Cu, Mn and Co. Al is the most abundant of the other trace elements followed by Ni and Cr. Of the toxic metals, the most represented is Cd, followed by Pb and As. There are differences in the concentration of micro- and macroelements in the mushrooms analysed, depending on the area from which they were collected because natural geology and geochemistry influence the content of macro- and microelements in wild edible mushrooms. The results show that the analysed mushrooms can be considered a good source of essential elements. The study also assessed potential health risks of heavy metals and the target hazard quotient (THQ) for As, Cd, Pb, Cu, Zn, Ni and Cr in the analysed mushrooms was lower than the safe level. The carcinogenic risk index revealed that Cd and Ni are the most prevalent pollutants in the mushrooms studied.

 

References:
Ahmed A.S.S., Sultana S., Habib A., Ullah H., Musa N., Hossain M.B., Rahman Md.M., Sarker Md.S.I. (2019): Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. Plos One, 14: e0219336. https://doi.org/10.1371/journal.pone.0219336
 
Árvay J., Tomáš J., Hauptvogl M., Massányi P., Harangozo Ľ., Tóth T., Stanovič R., Bryndzová Š., Bumbalová M. (2015): Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. Journal of Environmental Science and Health, Part B, 50: 833–843. https://doi.org/10.1080/03601234.2015.1058107
 
Bernaś E., Jaworska G., Lisiewska Z. (2006): Edible mushrooms as a source of valuable nutritive constituents. Acta Scientiarum Polonorum Technologia Alimentaria, 5: 5–20.
 
Chen H.X., Chen Y., Li S.F., Zhang W., Zhang Y., Gao S., Li N., Tao L., Wang Y. (2020): Trace elements determination and health risk assessment of Tricholoma matsutake from Yunnan Province, China. Journal of Consumer Protection and Food Safety, 15: 153–162. https://doi.org/10.1007/s00003-019-01256-y
 
Demková L., Árvay J., Hauptvogl M., Michalková J., Šnirc M., Harangozo Ľ., Bobuľská L., Bajčan D., Kunca V. (2021): Mercury content in three edible wild-growing mushroom species from different environmentally loaded areas in Slovakia: an ecological and human health risk assessment. Journal of Fungi, 7: 434. https://doi.org/10.3390/jof7060434
 
Dowlati M., Sobhi H.R., Esrafili A., Farzad Kia M., Yeganeh M. (2021): Heavy metals content in edible mushrooms: a systematic review, meta-analysis and health risk assessment. Trends in Food Science and Technology, 109: 527–535. https://doi.org/10.1016/j.tifs.2021.01.064
 
Đug S. (2013): Red List of Mushrooms of the Federation of Bosnia and Herzegovina. Book 4. Sarajevo, Faculty of Science Sarajevo, Bosnia and Herzegovina, 20–25.
 
EFSA (2008): Safety of Aluminium from Dietary Intake; Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA Journal, 754: 1–34. Available at: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2008.754 (accessed on 15. 05. 2021)
 
Falandysz J., Rizal L.M. (2016): Arsenic and its substances in mushrooms: a review. Journal of Environmental Science and Health, Part C, Environmental Carcinogenesis and Ecotoxicology Reviews, 34: 217–232.
 
FAO/WHO (2011): Food Standards Programme Codex Committee on Contaminants in Foods. 5th Session. The Hague, 468–469. Available at: http://www.fao.org/input/download/report/758/REP11_CFe.pdf (accessed on 12. 05. 2021)
 
Fu Z.Q., Liu G., Wang L.X. (2020): Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. Environmental Science and Pollution Research, 27: 29218–29227. https://doi.org/10.1007/s11356-020-09242-w
 
Gall J.E., Boyd R.S., Rajakaruna N. (2015): Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187: 201. https://doi.org/10.1007/s10661-015-4436-3
 
García M.A., Alonso J., Melgar M.J. (2013): Bioconcentration of chromium in edible mushrooms: influence of environmental and genetic factors. Food and Chemical Toxicology, 58: 249–254. https://doi.org/10.1016/j.fct.2013.04.049
 
Gas M.I., Segovia N., Morton O., Cervantes M.L., Godinez L., Peña P., Acosta E. (2000): 137Cs and relationships with major and trace elements in edible mushrooms from Mexico. Science of the Total Environment, 262: 73–89. https://doi.org/10.1016/S0048-9697(00)00574-X
 
Giannaccini G., Betti L., Palego L., Mascia G., Schmid L., Lanza M., Mela A., Fabbrini L., Biondi L., Lucacchini A. (2012): The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environmental Monitoring and Assessment, 184: 7579–7595. https://doi.org/10.1007/s10661-012-2520-5
 
Gucia M., Jarzyńska G., Kojta A.K., Falandysz J. (2012): Temporal variability in 20 chemical elements content of Parasol Mushroom (Macrolepiota procera) collected from two sites over a few years. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 47: 81–88. https://doi.org/10.1080/03601234.2012.611433
 
Haro A., Trescastro A., Lara L., Fernández-Fígares I., Nieto R., Seiquer I. (2020): Mineral elements content of wild growing edible mushrooms from the southeast of Spain. Journal of Food Composition and Analysis, 91: 103504. https://doi.org/10.1016/j.jfca.2020.103504
 
Karaman M.A., Matavulj M.N. (2005): Macroelements and heavy metals in some lignicolous and tericolous fungi. Matica Srpska Proceedings for Natural Sciences, 108: 255–267. https://doi.org/10.2298/ZMSPN0508255K
 
Lau C.C., Abdullah N., Shuib A.S. (2013): Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom, Pleurotus cystidiosus O.K. Miller identified by LC-MS/MS. BMC Complementary and Alternative Medicine, 13: 313. https://doi.org/10.1186/1472-6882-13-313
 
Mleczek M., Siwulski M., Budka A., Mleczek P., Budzyńska S., Szostek M., Kuczyńska-Kippen N., Kalač P., Niedzielski P., Gąsecka M., Goliński P., Magdziak Z., Rzymski P. (2021): Toxicological risks and nutritional value of wild edible mushroom species – a half-century monitoring study. Chemosphere, 263: 128095. https://doi.org/10.1016/j.chemosphere.2020.128095
 
Nikkarinen M., Mertanen E. (2004): Impact of geological origin on trace element composition of edible mushrooms. Journal of Food Composition and Analysis, 17: 301–310. https://doi.org/10.1016/j.jfca.2004.03.013
 
Nowakowski P., Markiewicz-Żukowska R., Soroczyńska J., Puścion-Jakubik A., Mielcarek K., Borawska M.H., Socha K. (2021): Evaluation of toxic element content and health risk assessment of edible wild mushrooms. Journal of Food Composition and Analysis, 96: 103698. https://doi.org/10.1016/j.jfca.2020.103698
 
Oteiza P.I., Mackenzie G.G. (2005): Zinc, oxidant-triggered cell signaling, and human health. Molecular Aspects of Medicine, 26: 245–255. https://doi.org/10.1016/j.mam.2005.07.012
 
Ouzouni P.K., Veltsistas P.G., Paleologos E.K., Riganakos K.A. (2009): Determination of metal content in wild edible mushroom species from regions of Greece. Journal of Food Composition and Analysis, 20: 480–486. https://doi.org/10.1016/j.jfca.2007.02.008
 
Panigrahi D. (2019): Sulphur (gandhaka) purification methods W.S.R. to rasa classics. Journal of Biomedical and Pharmaceutical Research, 8: 92–98. https://doi.org/10.32553/jbpr.v8i6.698
 
Reczyński W., Muszyńska B., Opoka W., Smalec A., Sułkowska-Ziaja K., Malec M. (2013): Comparative study of metals accumulation in cultured in vitro mycelium and naturally grown fruiting bodies of Boletus badius and Cantharellus cibarius. Biological Trace Element Research, 153: 355–362. https://doi.org/10.1007/s12011-013-9670-3
 
Salihović M., Pazalja M., Huremović M., Ajanović A., Tahirović I. (2021): Chemical ingredients of fresh and dry wild mushrooms from Bosnia and Herzegovina. Asian Journal of Pharmaceutical Research and Health Care, 13: 1–9.
 
Sarikurkcu C., Akata I., Guven G., Tepe B. (2020): Metal concentration and health risk assessment of wild mushrooms collected from the Black Sea region of Turkey. Environmental Science and Pollution Research, 27: 26419–26441. https://doi.org/10.1007/s11356-020-09025-3
 
Širić I., Kasap A., Kos I., Markota T., Tomić D., Poljak M. (2016): Heavy metal content and bioaccumulation potential of some wild edible fungi. Šumarski List, 140: 29–37.
 
Stefanović V., Trifković J., Djurdjić S., Vukojević V., Tešić Ž., Mutić J. (2016): Study of silver, selenium and arsenic concentration in wild edible mushroom Macrolepiota procera, health benefit and risk. Environmental Science and Pollution Research, 23: 22084–22098. https://doi.org/10.1007/s11356-016-7450-2
 
Türkmen M., Budur D. (2018): Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chemistry, 254: 256–259. https://doi.org/10.1016/j.foodchem.2018.02.010
 
USEPA (2012): Integrated Risk Information System of the US Environmental Protection Agency. Washington, U.S. Environmental Protection Agency Available at: https://www.epa.gov/iris (accessed on 12. 05. 2021)
 
USEPA (2017): United States Environmental Protection Agency. IRIS Assessments. Washington, U.S. Environmental Protection Agency Available at: https://cfpub.epa.gov/ncea/iris2/atoz.cfm (accessed on 19. 05. 2021)
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti