Crop sequence effects on energy efficiency and land demand in a long-term fertilisation trial

https://doi.org/10.17221/440/2021-PSECitation:

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2021): Crop sequence effects on energy efficiency and land demand in a long-term fertilisation trial. Plant Soil Environ., 67: 739–746.

 

download PDF

The effect of crop sequences (CR – continuous winter rye; CropR – three-field crop rotation of winter rye-spring barley-bare fallow) and fertilisation systems (unfertilised control, mineral fertiliser (NPK), farmyard manure (FYM)) on crop yield, energy efficiency indicators and land demand were analysed in a long-term experiment under Pannonian climate conditions. Due to lower fuel consumption in the bare fallow, the total fuel consumption for CropR was 27% lower than in CR. It was for NPK and FYM fertilisation by 29% and 42% higher than in the control. Although the energy output was lower in CropR than CR, the energy use efficiency for grain production increased by 35% and for above-ground biomass production by 20%. Overall crop sequences, the NPK treatment had higher crop yields, energy outputs and net-energy output with a lower energy use efficiency than the unfertilised control. CropR increased the land demand just by 20% in comparison to CR, although one-third of the land was not used for crop production. The land demand could be decreased with fertilisation by 50% (NPK) or 48% (FYM). A bare fallow year in the crop rotation decreased the crop yield, energy input and increased the energy use efficiency and land demand.

 

References:
Biedermann G. (2009): Kumulierter Energieaufwand (KEA) der Weizenproduktion bei verschiedenen Produktionssystemen (konventionell und ökologisch) und verschiedenen Bodenbearbeitungssystemen (Pflug, Mulchsaat, Direktsaat). [Master Thesis]. Vienna, University of Natural Resources and Life Sciences.
 
Brentrup F., Küsters J. (2008): Energiebilanz der Erzeugung und Verwendung von mineralischen Düngemitteln – Stand und Perspektiven. KTBL-Schrift 463. Kuratorium für Technik und Bauwesen in der Landwirtschaft. Darmstadt, Germany, 56–64.
 
Castro H., Barrico M. de L.C., Rodríguez-Echeverría S., Freitas H. (2016): Trends in plant and soil microbial diversity associated with Mediterranean extensive cereal-fallow rotation agro-ecosystems. Agriculture, Ecosystems and Environment, 217: 33–40. https://doi.org/10.1016/j.agee.2015.10.027
 
Christen O., Sieling K. (1995): Effect of different preceding crops and crop rotations on yield of winter oil-seed rape (Brassica napus L.). Journal of Agronomy and Crop Science, 174: 265–271. https://doi.org/10.1111/j.1439-037X.1995.tb01112.x
 
Dinnes D.L., Karlen D.L., Jaynes D.B., Kaspar T.C., Hatfield J.L., Colvin T.S., Cambardella C.A. (2002): Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agronomy Journal, 94: 153–171. https://doi.org/10.2134/agronj2002.1530
 
DLG (1997): Futterwerttabellen Wiederkäuer. 7. erweiterte und überarbeitete Auflage. Frankfurt am Main, DLG-Verlags-GmbH.
 
Folberth C., Khabarov N., Balkovič J., Skalský R., Visconti P., Ciais P., Janssens I.A., Peñuelas J., Obersteiner M. (2020): The global cropland-sparing potential of high-yield farming. Nature Sustainability, 3: 281–289. https://doi.org/10.1038/s41893-020-0505-x
 
Gabriel J.L., Quemada M. (2011): Replacing bare fallow with cover crops in a maize cropping system: yield, N uptake and fertiliser fate. European Journal of Agronomy, 34: 133–143. https://doi.org/10.1016/j.eja.2010.11.006
 
Hernanz J.L., Sánchez-Girón V., Navarrete L., Sánchez M.J. (2014): Long-term (1983–2012) assessment of three tillage systems on the energy use efficiency, crop production and seeding emergence in a rain fed cereal monoculture in semiarid conditions in central Spain. Field Crops Research, 166: 26–37. https://doi.org/10.1016/j.fcr.2014.06.013
 
Hoeppner J.W., Entz M.H., McConkey B.G., Zentner R.P., Nagy C.N. (2005): Energy use and efficiency in two Canadian organic and conventional crop production systems. Renewable Agriculture and Food Systems, 21: 60–67. https://doi.org/10.1079/RAF2005118
 
Hülsbergen K.-J., Feil B., Biermann S., Rathke G.-W., Kalk W.-D., Diepenbrock W. (2001): A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems and Environment, 86: 303–321. https://doi.org/10.1016/S0167-8809(00)00286-3
 
Jacobs A., Brauer-Siebrecht W., Christen O., Götze P., Koch H.-J., Rücknagel J., Märländer B. (2016): Silage maize and sugar beet for biogas production in crop rotations and continuous cultivation – energy efficiency and land demand. Field Crops Research, 196: 75–84. https://doi.org/10.1016/j.fcr.2016.06.008
 
Jenssen T.K., Kongshaug G. (2003): Energy consumption and greenhouse gas emissions in fertiliser production. In: Proceedings of the International Fertiliser Society, No. 509. Colchester, UK.
 
Klimek-Kopyra A., Bacior M., Zając T. (2017): Biodiversity as a creator of productivity and interspecific competitiveness of winter cereal species in mixed cropping. Ecological Modelling, 343: 123–130. https://doi.org/10.1016/j.ecolmodel.2016.10.012
 
KTBL (2015): KTBL-Taschenbuch Landwirtschaft, 22. Auflage; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt.
 
Li F.R., Gao C.Y., Zhao H.L., Li X.Y. (2002): Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China. Agriculture, Ecosystems and Environment, 91: 101–111. https://doi.org/10.1016/S0167-8809(01)00265-1
 
Lin H.C., Huber J.A., Gerl G., Hülsbergen K.J. (2017): Effects of changing farm management and farm structure on energy balance and energy-use efficiency – a case study of organic and conventional farming systems in southern Germany. European Journal of Agronomy, 82: 242–253. https://doi.org/10.1016/j.eja.2016.06.003
 
Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2019): Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. European Journal of Agronomy, 103: 24–31. https://doi.org/10.1016/j.eja.2018.11.002
 
Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. (2021): Energy efficiency of continuous rye, rotational rye and barley in different fertilization systems in a long-term field experiment. Agronomy, 11: 229. https://doi.org/10.3390/agronomy11020229
 
Neugschwandtner R.W., Kaul H.-P., Liebhard P., Wagentristl H. (2015): Winter wheat yields in a long-term tillage experiment under Pannonian climate conditions. Plant, Soil and Environment, 61: 145–150.
 
ÖKL (2019): ÖKL-Richtwerte für die Maschinenselbstkosten 2019. Vienna, Österreichisches Kuratorium für Landtechnik und Landentwicklung (ÖKL).
 
Rathke G.-W., Wienhold B.J., Wilhelm W.W., Diepenbrock W. (2007): Tillage and rotation effect on corn-soybean energy bal­ances in eastern Nebraska. Soil and Tillage Research, 97: 60–70. https://doi.org/10.1016/j.still.2007.08.008
 
Saling P., Kölsch D. (2008): Ökobilanzierung: Energieverbräuche und CO2-Emissionen von Pflanzenschutzmitteln. KTBL-Schrift 463. Darmstadt, Kuratorium für Technik und Bauwesen in der Landwirtschaft, 65–71.
 
Schmidt L., Warnstorff K., Dörfel H., Leinweber P., Lange H., Merbach W. (2000): The influence of fertilization and rotation on soil organic matter and plant yields in the long-term Eternal Rye trial in Halle (Saale), Germany. Journal of Plant Nutrition and Soil Science, 163: 639–648. https://doi.org/10.1002/1522-2624(200012)163:6<639::AID-JPLN639>3.0.CO;2-L
 
Sørensen C.G., Halberg N., Oudshoorn F.W., Petersen B.M., Dalgaard R. (2014): Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120: 2–14. https://doi.org/10.1016/j.biosystemseng.2014.01.004
 
Steineck O., Ruckenbauer P. (1976): Results of a 70 years long-term rotation and fertilization experiment in the main cereal growing area of Austria. Annales Agronomiques, 27: 803–818.
 
Verdooren L.R. (2020): History of the statistical design of agricultural experiments. Journal of Agricultural, Biological and Environmental Statistics, 25: 457–486. https://doi.org/10.1007/s13253-020-00394-3
 
Zając T., Oleksy A., Stoklosa A., Klimek-Kopyra A., Macuda J. (2013): Vertical distribution of dry mass in cereals straw and its loss during harvesting. International Agrophysics, 27: 89–95. https://doi.org/10.2478/v10247-012-0072-0
 
Zeleke K.T. (2017): Fallow management increases soil water and nitrogen storage. Agricultural Water Management, 186: 12–20. https://doi.org/10.1016/j.agwat.2017.02.011
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti