Growth and glucosinolate profiles of Eruca sativa (Mill.) (rocket salad) and Diplotaxis tenuifolia (L.) DC. under different LED lighting regimes

https://doi.org/10.17221/44/2022-PSECitation:

Stajnko D., Berk P., Orgulan A., Gomboc M., Kelc D., Rakun J. (2022): Growth and glucosinolate profiles of Eruca sativa (Mill.) (rocket salad) and Diplotaxis tenuifolia (L.) DC. under different LED lighting regimes. Plant Soil Environ., 68: 466–478.

download PDF

In this study, the growth and glucosinolate (GSL) profiles of rocket salad Eruca sativa (Mill.) and Diplotaxis tenuifolia (L.) DC. were determined during 30 days growing under different lighting regimes; T5_ peak at 545 nm, LED1_ peak at 631 nm and LED2_ peak at 598 nm. The biggest increase of dry weight (DW) was measured in E. sativa under T5 (0.657 g DW/plant) and the lowest in D. tenuifolia under LED1 (0.080 g DW/plant). GSL content was found to vary significantly, regardless of the light treatment, but it is related with genotype (E. sativa, r = 0.802**). On average, the highest amount of 4-methylsulfinylbutyl-GSL (glucosativin) (7.3248 mg/g DW) was quantified in E. sativa and D. tenuifolia (6.7428 mg/g DW) under the T5. The regression analysis between different light wavelengths and glucosinolates showed the strongest correlation between photosynthetic photon flux density (PPFD_B) and 4-methylthiobutyl-GSL (glucoerucin) in E. sativa (r = 0.698*) and D. tenuifolia (r = 0.693*), respectively, which indicates the effect of light on the response of plants to induced stress and changes in GSL biosynthesis.

References:
Agerbirk N., Olsen C.E. (2012): Glucosinolate structures in evolution. Phytochemistry, 77: 16–45. https://doi.org/10.1016/j.phytochem.2012.02.005
 
Bell L., Oruna-Concha M.J., Wagstaff C. (2015): Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172: 852–861. https://doi.org/10.1016/j.foodchem.2014.09.116
 
Bones A.M., Rossiter J.T. (2006): The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67: 1053–1067. https://doi.org/10.1016/j.phytochem.2006.02.024
 
Brazaitytė A., Sakalauskienė S., Samuolienė G., Jankauskienė J., Viršilė A., Novičkovas A., Sirtautas R., Miliauskienė J., Vaštakaitė V., Dabašinskas L., Duchovskis P. (2015): The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chemistry, 173: 600–606.  https://doi.org/10.1016/j.foodchem.2014.10.077
 
Champolivier L., Merrien A. (1996): Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. European Journal of Agronomy, 5: 153–160. https://doi.org/10.1016/S1161-0301(96)02004-7
 
Charron C.S., Sams C.E. (2004): Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. Journal of the American Society for Horticultural Science, 129: 321–330. https://doi.org/10.21273/JASHS.129.3.0321
 
Chhajed S., Mostafa I., He Y., Abou-Hashem M., El-Domiaty M., Chen S.X. (2020): Glucosinolate biosynthesis and the glucosinolate-myrosinase system in plant defense. Agronomy, 10: 1786. https://doi.org/10.3390/agronomy10111786
 
Czerniawski P., Bednarek P. (2018): Glutathione S-transferases in the biosynthesis of sulfur-containing secondary metabolites in Brassicaceae plants. Frontiers in Plant Science, 9: 1639. https://doi.org/10.3389/fpls.2018.01639
 
Durian G., Rahikainen M., Alegre S., Brosché M., Kangasjärvi S. (2016): Protein phosphatase 2A in the regulatory network underlying biotic stress resistance in plants. Frontiers in Plant Science, 7: 812. https://doi.org/10.3389/fpls.2016.00812
 
Engelen-Eigles G., Holden G., Cohen J.D., Gardner G. (2006): The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). Journal of Agricultural and Food Chemistry, 54: 328–334. https://doi.org/10.1021/jf051857o
 
Frerigmann H., Pislewska-Bednarek M., Sánchez-Vallet A., Molina A., Glawischnig E., Gigolashvili T., Bednarek P. (2016): Regulation of pathogen-triggered tryptophan metabolism in Arabidopsis thaliana by MYB transcription factors and indole glucosinolate conversion products. Molecular Plant, 9: 682–695. https://doi.org/10.1016/j.molp.2016.01.006
 
Gigolashvili T., Engqvist M., Yatusevich R., Müller C., Flügge U.-I. (2008): HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytologist, 177: 627–642. https://doi.org/10.1111/j.1469-8137.2007.02295.x
 
Grubb C.D., Abel S. (2006): Glucosinolate metabolism and its control. Trends in Plant Science, 11: 89–100. https://doi.org/10.1016/j.tplants.2005.12.006
 
Gutbrodt B., Dorn S., Unsicker S.B., Mody K. (2012): Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology, 22: 101–111. https://doi.org/10.1007/s00049-012-0102-1
 
Hemm M.R., Ruegger M.O., Chapple C. (2003): The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. The Plant Cell, 15: 179–194. https://doi.org/10.1105/tpc.006544
 
Hirai M.Y., Sugiyama K., Sawada Y., Tohge T., Obayashi T., Suzuki A., Araki R., Sakurai N., Suzuki H., Aoki K., Goda H., Nishizawa O.I., Shibata D., Saito K. (2007): Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences, 104: 6478–6483. https://doi.org/10.1073/pnas.0611629104
 
Hoffmann A.M., Noga G., Hunsche M. (2015): High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress. Environmental and Experimental Botany, 109: 254–263. https://doi.org/10.1016/j.envexpbot.2014.06.017
 
Huseby S., Koprivova A., Lee B.-R., Saha S., Mithen R., Wold A.-B., Bengtsson G.B., Kopriva S. (2013): Diurnal and light regulation of sulphur assimilaion and glucosinolate biosynthesis in Arabidopsis. Journal of Experimental Botany, 64: 1039–1048. https://doi.org/10.1093/jxb/ers378
 
Jamal J., Azizi S., Abdollahpouri A., Ghaderi N., Sarabi B., Silva-Ordaz A., Castaño-Meneses V.M. (2021): Monitoring rocket (Eruca sativa) growth parameters using the internet of things under supplemental LEDs lighting. Sensing and Bio-Sensing Research, 34: 100450. https://doi.org/10.1016/j.sbsr.2021.100450
 
Jensen C.R., Mogensen V.O., Mortensen G., Fieldsen J.K., Milford G.F.J., Andersen M.N., Thage J.H. (1996): Seed glucosinolate, oil and protein contents of field-grown rape (Brasica napus L.) affected by soil drying and evaporative demand. Field Crops Research, 47: 93–105. https://doi.org/10.1016/0378-4290(96)00026-3
 
Jin J., Koroleva O.A., Gibson T., Swanston J., Magan J., Zhang Y., Rowland I.R., Wagstaff C. (2009): Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. Journal of Agricultural and Food Chemistry, 57: 5227−5234. https://doi.org/10.1021/jf9002973
 
Jones C.G., Hartley S.E. (1999): A protein competition model of phenolic allocation. Oikos, 86: 27–44. https://doi.org/10.2307/3546567
 
Katsarou D., Omirou M., Liadaki K., Tsikou D., Delis C., Garagounis C., Krokida A., Zambounis A., Papadopoulou K.K. (2016): Glucosinolate biosynthesis in Eruca sativa. Plant Physiology and Biochemistry, 109: 452–466. https://doi.org/10.1016/j.plaphy.2016.10.024
 
Koprivova A., Kopriva S. (2016): Sulfur metabolism and its manipulation in crops. Journal of Genetics and Genomics, 43: 623–629. https://doi.org/10.1016/j.jgg.2016.07.001
 
Kopsell D.A., Sams C.E., Morrow R.C. (2015): Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience, 50: 1285–1288. https://doi.org/10.21273/HORTSCI.50.9.1285
 
Levy M., Wang Q.M., Kaspi R., Parrella M.P., Abel S. (2005): Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant Journal, 43: 79–96. https://doi.org/10.1111/j.1365-313X.2005.02435.x
 
Malka S.K., Cheng Y.F. (2017): Possible interactions between the biosynthetic pathways of indole glucosinolate and auxin. Frontiers in Plant Science, 8: 2131. https://doi.org/10.3389/fpls.2017.02131
 
Maruyama-Nakashita A., Nakamura Y., Tohge T., Saito K., Takahashi H. (2006): Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. The Plant Cell, 18: 3235–3251. https://doi.org/10.1105/tpc.106.046458
 
Mostafa I., Yoo M.-J., Zhu N., Geng S.S., Dufresne C., Abou-Hashem M., El-Domiaty M., Chen S.X. (2017): Membrane proteomics of Arabidopsis glucosinolate mutants cyp79b2/b3 and myb28/29. Frontiers in Plant Science, 8: 534. https://doi.org/10.3389/fpls.2017.00534
 
Pasini F., Verardo V., Caboni M.F., D’Antuono L.F. (2012): Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chemistry, 133: 1025–1033. https://doi.org/10.1016/j.foodchem.2012.01.021
 
Petersen A., Hansen L.G., Mirza N., Crocoll C., Mirza O., Halkier B.A. (2019): Changing substrate specificity and iteration of amino acid chain elongation in glucosinolate biosynthesis through targeted mutagenesis of Arabidopsis methylthioalkylmalate synthase 1. Bioscience Reports, 39: BSR20190446. https://doi.org/10.1042/BSR20190446
 
Pfalz M., Mikkelsen M.D., Bednarek P., Olsen C.E., Halkier B.A., Kroymann J. (2011): Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. The Plant Cell, 23: 716–729. https://doi.org/10.1105/tpc.110.081711
 
Pfalz M., Mukhaimar M., Perreau F., Kirk J., Hansen C.I.C., Olsen C.E., Agerbirk N., Kroymann J. (2016): Methyl transfer in glucosinolate biosynthesis mediated by indole glucosinolate o-methyltransferase 5. Plant Physiology, 172: 2190–2203. https://doi.org/10.1104/pp.16.01402
 
Radovich T.J.K., Kleinhenz M.D., Streeter J.G. (2005): Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. Journal of the American Society of Horticultural Science, 130: 943–949. https://doi.org/10.21273/JASHS.130.6.943
 
Rahikainen M., Trotta A., Alegre S., Pascual J., Vuorinen K., Overmyer K., Moffatt B., Ravanel S., Glawischnig E., Kangasjarvi S. (2017): PP2A-B'gamma modulates foliar trans-methylation capacity and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. The Plant Journal: For Cell and Molecular Biology, 89: 112–127. https://doi.org/10.1111/tpj.13326
 
Schuster J., Knill T., Reichelt M., Gershenzon J., Binder S. (2006): Branched-chain aminotransferas4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. The Plant Cell, 18: 2664–2679. https://doi.org/10.1105/tpc.105.039339
 
Seo M.-S., Kim J.S. (2017): Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae. Molecules, 22: 1549. https://doi.org/10.3390/molecules22091549
 
Signore A., Bell L., Santamaria P., Wagstaff C., Van Labeke M.-C. (2020): Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity, and contributes to increased total glucosinolates content. Frontiers in Plant Science, 11: 604. https://doi.org/10.3389/fpls.2020.00604
 
Sønderby I.E., Hansen B.G., Bjarnholt N., Ticconi C., Halkier B.A., Kliebenstein D.J. (2007): A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One, 12: e1322. https://doi.org/10.1371/journal.pone.0001322
 
Schreiner M., Beyene B., Krumbein A., Stützel H. (2009): Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. Journal of Agricultural and Food Chemistry, 57: 7259–7263. https://doi.org/10.1021/jf901076h
 
Schreiner M., Huyskens-Keil S., Peters P., Schonhof I., Krumbein A., Widell S. (2002): Seasonal climate effects on root colour and compounds of red radish. Journal of the Science of Food and Agriculture, 82: 1325–1333. https://doi.org/10.1002/jsfa.1189
 
Tan W.K., Goenadie V., Lee H.W., Liang X., Loh C.S., Ong C.N., Tan H.T.W. (2020): Growth and glucosinolate profiles of a common Asian green leafy vegetable, Brassica rapa subsp. chinensis var. parachinensis (choy sum), under LED lighting. Scientia Horticulturae, 261: 108922. https://doi.org/10.1016/j.scienta.2019.108922
 
Velasco P., Cartea M.E., González C., Vilar M., Ordás A. (2007): Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). Journal of Agricultural and Food Chemistry, 55: 955–962. https://doi.org/10.1021/jf0624897
 
Yan X.F., Chen S.X. (2007): Regulation of plant glucosinolate metabolism. Planta, 226: 1343–1352. https://doi.org/10.1007/s00425-007-0627-7
 
Zhang H.Y., Schonhof I., Krumbein A., Gutezeit B., Li L., Stützel H., Schreiner M. (2008): Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp. rapifera L.). Journal of Plant Nutrition and Soil Science, 171: 255–265. https://doi.org/10.1002/jpln.200700079
 
Zhuang L., Huang G.Q., Li X.D., Xiao J.X., Guo L.P. (2022): Effect of different LED lights on aliphatic glucosinolates metabolism and biochemical characteristics in broccoli sprouts. Food Research International, 154: 110015. https://doi.org/10.1016/j.foodres.2022.111015
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti