orcid | Agricultural Journals" />

Effects of fertilisers on pulse crop productivity and nitrogen assimilation on acid soil

https://doi.org/10.17221/462/2019-PSECitation:Tripolskaja L., Asakaviciute R. (2019): Effects of fertilisers on pulse crop productivity and nitrogen assimilation on acid soil. Plant Soil Environ., 65: 536-540.
download PDF

This research aimed to compare the productivity of three species of pulse plants (Vicia faba L., Pisum sativum L., Lupinus angustifolium L.) in acidic sandy loam soil and to determine the influence of NPK (N0P0K0, N0P27K73, N30P27K73) fertilisers on grain yield and nitrogen assimilation. The experiments were conducted Voke Branch of Lithuanian Research Centre for Agriculture and Forestry (Baltic Sea region, 54°33'49.8''N, 25°05'12.9''E) in 2016–2018. Fertilisation with PK increased the grain yield of Vicia faba L. and Pisum sativum L. (P < 0.05) and had no effect on the yield of Lupinus angustifolium L. (P > 0.05). Nitrogen fertilisers only increased the yield of Pisum sativum L. grain, reduced the yield of Lupinus angustifolium L. grain and did not affect Vicia faba L. The chlorophyll concentration in the leaves was significantly dependent on the species of plant. In acidic soil, Vicia faba L. and Lupinus angustifolium L. assimilated similar amounts of total nitrogen in the grain – 146.8–230.0 and 160.1–220.5 kg N/ha, respectively. Pisum sativum L. nitrogen assimilation was lower – 93.0–128.8 kg N/ha. The assimilation of total nitrogen in Pisum sativum L. was stimulated by the application of P27K73 and N30, and in Vicia faba L. – only by fertilisation with PK.

Adak M.S., Kibritci M. (2016): Effect of nitrogen and phosphorus levels on nodulation and yield components in faba bean (Vicia faba L.). Legume Research, 39: 991–994.
Adams M.A., Turnbull T.L., Sprent J.I., Buchmann N. (2016): Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proceedings of the National Academy of Sciences, 113: 4098–4103. https://doi.org/10.1073/pnas.1523936113
Akond A.S.M.G.M., Khandaker L., Berthold J., Gates L., Peters K., Delong H., Hossain K. (2011): Anthocyanin, total polyphenols and antioxidant activity of common bean. American Journal of Food Technology, 6: 385–394. https://doi.org/10.3923/ajft.2011.385.394
Allito B.B., Ewusi-Mensah N., Alemneh A.A. (2014): Rhizobia strain and host-legume interaction effects on nitrogen fixation and yield of grain legume: A review. Molecular Soil Biology, 6: 1–12.
Amba A.A., Agbo E.B., Garba A. (2013): Effect of nitrogen and phosphorus fertilizers on nodulation of some selected grain legumes at Bauchi, Northern Guinea Savanna of Nigeria. International Journal of Biosciences, 3: 1–7. https://doi.org/10.12692/ijb/3.10.1-7
Dalaram I.S. (2017): Evaluation of total polyphenol content and antioxidant capacity of different verity lupin seeds. Potravinarstvo, 11: 26–34. https://doi.org/10.5219/678
Gresta F., Wink M., Prins U., Abberton M., Capraro J., Scarafoni A., Hill G. (2017): Lupinus in Europen cropping systems. In: Murphy-Bokern D., Stoddart F.L., Watson C.A. (eds.): Legumes in Cropping Systems. Wallingford, Centre for Agriculture and Bioscience International, 88–108.
Jaiswal S.K., Naamala J., Dakora F.D. (2018): Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biology and Fertility of Soils, 54: 309–318. https://doi.org/10.1007/s00374-018-1262-0
Księżak J., Staniak M., Bojarszczuk J. (2018): Nutrient contents in yellow lupine (Lupinus luteus L.) and blue lupine (Lupinus angustifolius L.) cultivars depending on habitat conditions. Polish Journal of Environmental Studies, 27: 1145–1153. https://doi.org/10.15244/pjoes/76677
Lapinskas E. (1998): Biological Nitrogen Fixation and Legume Inoculation. Kėdainiai distr., Lithuanian Research Centre for Agriculture and Forestry. (In Lithuanian)
Nguyen A.H., Hodgson L.M., Erskine W., Barker S.J. (2016): An approach to overcoming regeneration recalcitrance in genetic transformation of lupins and other legumes. Plant Cell, Tissue and Organ Culture, 127: 623–635. https://doi.org/10.1007/s11240-016-1087-1
Novichonok E.V., Novichonok A.O., Kurbatova J.A., Markovskaya E.F. (2016): Use of the atLEAF+ chlorophyll meter for a nondestructive estimate of chlorophyll content. Photosynthetica, 54: 130–137. https://doi.org/10.1007/s11099-015-0172-8
Pampana S., Masoni A., Mariotti M., Ercoli L., Arduini I. (2018): Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Experimental Agriculture, 54: 66–82. https://doi.org/10.1017/S0014479716000685
Rubiales D., Araújo S.S., Vaz Patto M.C., Rispail N., Valdés-López O. (2018): Editorial: Advances in legume research. Frontiers in Plant Science, 9: 501. https://doi.org/10.3389/fpls.2018.00501
Sanz-Saez A., Morales F., Arrese-Igor C., Aranjuelo I. (2017): P deficiency: A major limiting factor for rhizobial symbiosis. In: Sulieman S., Tran L.S. (eds.): Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. New York, Springer, 21–39.
Symanowicz B., Kalembasa S., Becher M., Toczko M., Skwarek K. (2017): Effect of varied levels of fertilisation with potassium on field pea yield and content and uptake of nitrogen. Acta Scientiarum Polonorum Agricultura, 16: 163–173.
Šarić G.K., Milaković Z., Rapčan I., Majić I., Šeput J., Kojić D. (2016): The growth and yield of peas (Pisum sativum L.) under the influence of inoculation and nitrogen fertilization. Agronomski Glasnik: Glasilo Hrvatskog Agronomskog Društva, 78: 205–214. (In Croatian)
Turuko M., Mohammed A. (2014): Effect of different phosphorus fertilizer rates on growth, dry matter yield and yield components of common bean (Phaseolus vulgaris L.). World Journal of Agricultural Research, 2: 88–92. https://doi.org/10.12691/wjar-2-3-1
World Reference Base for Soil Resources 2014, update 2015. (2015): International Soil Classification System for Naming Soils and Creating Legends for Soil Maps – Update 2015. World Soil Resources Reports No. 106. Rome, Food and Agriculture Organization of the United Nations.
Zhu J.J., Tremblay T., Liang Y.L. (2012): Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Canadian Journal of Soil Science, 92: 645–648. https://doi.org/10.4141/cjss2011-100
download PDF

© 2019 Czech Academy of Agricultural Sciences