Dynamics of herbicides degradation in carrot (Daucus carota L.) roots and leaves

https://doi.org/10.17221/46/2021-PSECitation:

Šuk J., Hamouzová K., Hajšlová J., Jursík M. (2021): Dynamics of herbicides degradation in carrot (Daucus carota L.) roots and leaves. Plant Soil Environ., 67: 353–359.

 

download PDF

This research had two main aims. First, to analyse the degradation dynamics of herbicides commonly used in carrot (aclonifen, clomazone, flufenacet, linuron, metribuzin, pendimethalin, S-metolachlor). Second, to compare the amount of herbicide residues with the maximum residue level and with requirements of non-residual production. The field experiments were conducted in 2012–2016. All tested herbicides resulted in relatively low concentrations of residues in carrot roots (up to 10 µg/kg) when the recommended withdrawal period was followed between application and harvest. The concentration of S-metolachlor in carrot roots exceeded the maximal residual limit (MRL) if the application was carried out four days before harvest. The measured values of other tested herbicide residues in carrot roots did not exceed the MRL in any of the tested samples. Pre-emergent use of clomazone, linuron and flufenacet could be recommended for non-residue carrot production. Post-emergent use of metribuzin can be used for non-residue carrot production if the interval between application and harvest is at least 80 days. Concentrations of herbicide residues in carrot leaves were many times higher than in roots. All tested herbicides can be applied for safe carrot production if applicators adhere to the requirements for use.

 

References:
Amjad M., Ahmad T., Iqbal Q., Nawaz A., Jahangir M.M. (2013): Herbicide contamination in carrot grown in Punjab, Pakistan. Pakistan Journal of Agricultural Science, 50: 7–10.
 
Appleby A.P., Valverde B.E. (1988): Behaviour of dinitroaniline herbicides in plants. Weed Technology, 3: 198–206. https://doi.org/10.1017/S0890037X00031626
 
Araújo E.A., Lara M.C.R., dos Reis M.R., Viriato R.L.S., Rocha R.A.R., Gonçalves R.G.L., Heleno F.F., de Queiroz M.E.L.R., Tronto J., Pinto F.G. (2016): Determination of haloxyfop-methyl, linuron, and proxymidone pesticides in carrot using SLE-LTP extraction and GC-MS. Food Analytical Methods, 9: 1344–1352. https://doi.org/10.1007/s12161-015-0315-3
 
Baig S.A., Akhtera N.A., Ashfaq M., Asi M.R. (2009): Determination of the organophosphorus pesticide in vegetables by high-performance liquid chromatography. American-Eurasian Journal of Sustainable Agriculture, 5: 513–519.
 
Coelho M., Bianco S., Carvalho L.B. (2009): Weed interference on carrot crop (Daucus carota). Planta Daninha, 27: 913–920. https://doi.org/10.1590/S0100-83582009000500004
 
Ducruet J.M. (1991): Photosystem II inhibitors In: Scalla R. (ed.): Herbicides: Mode of Action and Uptake. Paris, French National Institute for Agricultural Research: 79–114. ISBN 2738002110
 
Engebretson J., Hall G., Hengel M., Shibamoto T. (2001): Analysis of pendimethalin residues in fruit, nuts, vegetables, grass, and mint by gas chromatography. Journal of Agricultural and Food Chemistry, 49: 2198–2206. https://doi.org/10.1021/jf010048b
 
FAOSTAT (2017): Carrot and Turnip Production Statistics. Rome, Food and Agriculture Organization Corporate Statistical Database. Available at: http://www.fao.org/faostat/en/#data/QC
 
Footprint Database (2021): Available at: http://sitem.herts.ac.uk/aeru/footprint/en/ (accessed on January 10th of 2021)
 
Fryer J.D., Kirkland K. (1970): Field experiments to investigate long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron: report after 6 years. Weed Research, 10: 133–158. https://doi.org/10.1111/j.1365-3180.1970.tb00934.x
 
Gilliam C.H., Eakes D.J., Olive J.W. (1993): Herbicide use during propagation affects root initiation and development. Journal of Environmental Horticulture, 11: 157–159. https://doi.org/10.24266/0738-2898-11.4.157
 
Grichar W.J., Besler B.A., Brewer K.D., Palrang D.T. (2003): Flufenacet and metribuzin combinations for weed control and corn (Zea mays) tolerance. Weed Technology, 17: 346–351. https://doi.org/10.1614/0890-037X(2003)017[0346:FAMCFW]2.0.CO;2
 
Grygiel K., Sadowski J., Snopczyński T., Wysocki A. (2012): Herbicide residues in agricultural products and in the soil. Journal of Ecology Health and Environment, 16: 159–163.
 
Horská T., Kocourek F., Stará J., Holý K., Mráz P., Krátký F., Kocourek V., Hajšlová J. (2020): Evaluation of pesticide residue dynamics in lettuce, onion, leak, carrot and parsley. Foods, 9: 680. https://doi.org/10.3390/foods9050680
 
Hu J.Y., Cao D., Deng Z.B. (2011): Determination of clomazone residues in soybean and soil by high performance liquid chromatography with DAD detection. Bulletin of Environmental Contamination and Toxicology, 86: 444–448. https://doi.org/10.1007/s00128-011-0224-0
 
Imai M., Takagi N., Yoshizaki M., Hosoki E., Kobayashi Y. (2019): Determination of flufenacet and its metabolites in agricultural products by LC-MS/MS. Food Hygiene Safety Science, 60: 1–6. https://doi.org/10.3358/shokueishi.60.1
 
Kahlau S., Schröder F., Freigang J., Laber B., Lange G., Passon D., Kleessen S., Lohse M., Schulz A., von Koskull-Döring P., Klie S., Gille S. (2020): Aclonifen targets solanesyl diphosphate synthase, representing a novel mode of action for herbicides. Pest Management Science, 76: 3377–3388. https://doi.org/10.1002/ps.5781
 
Kavaliauskaite D., Starkuté R., Bundiniené O., Jankauskiené J. (2009): Chemical weed control in carrot crop. Acta Horticulturae, 830: 385–390. https://doi.org/10.17660/ActaHortic.2009.830.54
 
Khan S.U., Belanger A., Hogue E.J., Hamilton H.A., Mathur S.P. (1976): Residues of paraquat and linuron in an organic soil and their uptake by onions, lettuce and carrots. Canadian Journal of Soil Science, 56: 407–412. https://doi.org/10.4141/cjss76-049
 
Kilinc Ö., Grasset R., Reynaud S. (2011): The herbicide aclonifen: the complex theoretical bases of sunflower tolerance. Pesticide Biochemistry and Physiology, 100: 193–198. https://doi.org/10.1016/j.pestbp.2011.04.001
 
Kocourek F., Stará J., Holý K., Horská T., Kocourek V., Kováčová J., Kohoutková J., Suchanová M., Hajšlová J. (2017): Evaluation of pesticide residue dynamics in Chinese cabbage, head cabbage and cauliflower. Food Additives and Contaminants: Part A, 34: 980–989. https://doi.org/10.1080/19440049.2017.1311419
 
Løkke H. (1974): Residues in carrots treated with linuron. Pesticide Science, 5: 749–757. https://doi.org/10.1002/ps.2780050610
 
Malidža G., Glušac D., Takač A. (1997): Phytopharmacological value of herbicides in carrot production. Acta Horticulturae, 462: 549–552. https://doi.org/10.17660/ActaHortic.1997.462.80
 
Nalini R.R.P., Janaki P., Balusamy M., Chinnusamy C. (2015): Persistence and residua of clomazone in soil and soybean by HPLCDAD. Asian Journal of Chemistry, 28: 51–54. https://doi.org/10.14233/ajchem.2016.19222
 
Ogbuchiekwe E.J., McGiffer M.E., Nunez J., Fennimore S.A. (2004): Tolerance of carrot to low-rate preemergent and postemergent herbicides. HortScience, 39: 291–296. https://doi.org/10.21273/HORTSCI.39.2.291
 
Rigoli R.P., Fontana L.C., Figueredo S.S., Noldin J.A. (2008): Response of beetroot (Beta vulgaris) and carrot (Daucus carota) to simulated glyphosate and clomazone drift. Planta Daninha, 26: 451–456. https://doi.org/10.1590/S0100-83582008000200022
 
Robinson D.E., McNaughton K.E. (2012): Time of application of S-metolachlor affects growth, marketable yield and quality of carrot and red beet. American Journal of Plant Science, 3: 546–550. https://doi.org/10.4236/ajps.2012.34065
 
SANTE/12682 (2019): European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Bruxelles, DG SANTE.
 
Saritha J.D., Ramprakash T., Rao P.C., Madhavi M. (2017): Persistence of metribuzin in tomato growing soils and tomato fruits. Nature Environment and Pollution Technology, 16: 505–508.
 
Selim H.M., Naquin B.J. (2011): Retention of metribuzin by sugarcane residue: adsorption-desorption and miscible displacement experiments. Soil Science, 176: 520–526. https://doi.org/10.1097/SS.0b013e31822b3a5c
 
Singh B., Bhullar M.S., Walia U.S., Randhawa S.K., Phutela R.P. (2010): Weed control in carrot (Daucus carota): bio-efficacy and residues of pre-emergence herbicides. Indian Journal of Ecology, 37: 145–148.
 
Stoleru V., Munteanu N., Hura C. (2015): Organophosphorus pesticide residues in soil and vegetable, through different growing systems. Environmental Engineering and Management Journal, 14: 1465–1473. https://doi.org/10.30638/eemj.2015.158
 
Szpyrka E., Slowik-Borowiec M., Ksiazek P., Zwolak A., Podbielska M. (2020): The difference in dissipation of clomazone and metazachlor in soil under field and laboratory conditions and their uptake by plants. Scientific Reports, 10: 3747. https://doi.org/10.1038/s41598-020-60720-0
 
Wehtje G., Wilcut J.W., Hicks T.V., McGuire J. (1988): Relative tolerance of peanuts to alachlor and metolachlor. Peanut Science, 15: 53–56. https://doi.org/10.3146/i0095-3679-15-2-3
 
Welbaum G.E. (2015): Vegetable Production and Practices. Boston, Centre for Agriculture and Biosciences International.
 
Winter C.K. (1992): Pesticide tolerances and their relevance as safety standards. Regulatory Toxicology and Pharmacology, 15: 137–150. https://doi.org/10.1016/0273-2300(92)90045-B
 
Yajima T., Fujita M., Iijima K., Sato K., Kato Y. (2017): Effect of sample preparation on the estimation of residue levels of sprayed pesticides in separate analyses of turnip roots and leaves: inclusion or exclusion of the root-shoot junction. Journal of Pesticide Science, 42: 119–123. https://doi.org/10.1584/jpestics.D17-016
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti