Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin

https://doi.org/10.17221/478/2020-PSECitation:

He F., Shi L.L., Tian J.C., Mei L.J. (2021): Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin. Plant Soil Environ., 67: 1–7.

 

download PDF

To evaluate the long-term effects of fertilisation on soil organic carbon (SOC) sequestration in rice-wheat cropping ecosystems, SOC dynamics, stocks and fractionation were determined. The treatments included no fertiliser, mineral N and P, mineral N, P and K, organic fertiliser (OF), OF plus NP and OF plus NPK. The results showed that the average carbon inputs that derived from crop stubble, root residues and organic fertilisers were between 1.47 and 4.33 t/ha/year over the past 34 years. The average SOC stocks measured in the samples collected in 2011–2013 ranged from 31.20 to 38.52 t/ha. The range of the SOC sequestration rate was 0.11–0.40 t/ha/year with a SOC sequestration efficiency of 6.3%. Overall, organic fertilisation significantly promoted C-input, SOC and the sequestration rate compared to mineral fertilisation. The "active pool" (very labile and labile fractions) and "passive pool" (less labile and recalcitrant fractions) accounted for about 71.0% and 29.0% of the SOC fractions, respectively. Significant positive relationships between C-inputs and SOC fractions indicated that SOC was not saturated in this typical rice-wheat cropping system, and fertilisation, especially organic amendment, is an effective SOC strategy sequestration.

 

References:
Arshad M.A., Martin S. (2002): Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment, 88: 153–160. https://doi.org/10.1016/S0167-8809(01)00252-3
 
Chan K.Y., Bowman A., Oates A. (2001): Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science, 166: 61–67. https://doi.org/10.1097/00010694-200101000-00009
 
Chander K., Goyal S., Mundra M.C., Kapoor K.K. (1997): Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biology and Fertility of Soils, 24: 306–310. https://doi.org/10.1007/s003740050248
 
Chen A.L., Xie X.L., Dorodnikov M., Wang W., Ge T.D., Shibistova O., Wei W.X., Guggenberger G. (2016): Response of paddy soil organic carbon accumulation to changes in long-term yield-driven carbon inputs in subtropical China. Agriculture, Ecosystems and Environment, 232: 302–311. https://doi.org/10.1016/j.agee.2016.08.018
 
Devêvre O.C., Horwáth W.R. (2000): Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology and Biochemistry, 32: 1773–1785. https://doi.org/10.1016/S0038-0717(00)00096-1
 
Gulde S.C., Chung H., Amelung W., Chang C.U., Six J. (2008): Soil carbon saturation controls labile and stable carbon pool dynamics. Soil Science Society of America Journal, 72: 605–612. https://doi.org/10.2136/sssaj2007.0251
 
Hua K.K., Wang D.Z., Guo X.S., Guo Z.B. (2014): Carbon sequestration efficiency of organic amendments in a long-term experiment on a Vertisol in Huang-Huai-Hai Plain, China. Plos One, 9: e108594. https://doi.org/10.1371/journal.pone.0108594
 
IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014 (update 2015). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, Food and Agriculture Organisation, 12–21. E-ISBN 978-92-5108370-3
 
Kundu S., Bhattacharyya R., Prakash V., Ghosh B.N., Gupta H.S. (2007): Carbon sequestration and relationship between carbon addition and storage under rainfed soybean-wheat rotation in a sandy loam soil of the Indian Himalayas. Soil and Tillage Research, 92: 87–95. https://doi.org/10.1016/j.still.2006.01.009
 
Lal R. (2004): Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623–1627. https://doi.org/10.1126/science.1097396
 
Lal R. (2018): Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 24: 3285–3301. https://doi.org/10.1111/gcb.14054
 
Majumder B., Mandal B., Bandyopadhyay P.K., Gangopadhyay A., Mani P.K., Kundu A.L., Mazumdar D. (2008): Organic amendments influence soil organic carbon pools and rice-wheat productivity. Soil Science Society of America Journal, 72: 775. https://doi.org/10.2136/sssaj2006.0378
 
Mandal B., Majumder B., Adhya T.K., Bandyopadhyay P.K., Gangopadhyay A., Sarkar D., Kundu M.C., Choudhury S.G., Hazra G.C., Kundu S., Samantaray R.N., Misra A.K. (2008): Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Global Change Biology, 14: 2139–2151. https://doi.org/10.1111/j.1365-2486.2008.01627.x
 
Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds): Methods of Soil Analysis. Madison, Soil Science Society of America and American Society of Agronomy, 961–1010. ISBN:9780891188667
 
Olk D.C., Dancel M.C.A., Moscoso E., Jimenez R.R., Dayrit F. (2002): Accumulation of lignin residues in organic matter fractions of lowland rice soils: a pyrolysis-gc-ms study. Soil Science, 167: 590–606. https://doi.org/10.1097/00010694-200209000-00004
 
Poeplau C., Vos C., Don A. (2017): Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil, 3: 61–66. https://doi.org/10.5194/soil-3-61-2017
 
Powlson D.S., Gregory P.J., Whalley W.R., Quinton J.N., Hopkins D.W., Whitmore A.P., Hirsch P.R., Goulding K.W.T. (2011): Soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 36: S72–S87. https://doi.org/10.1016/j.foodpol.2010.11.025
 
Qin B., Xu P., Wu Q., Luo L., Zhang Y. (2007): Environmental issues of Lake Taihu, China. In: Qin B., Liu Z., Havens K. (eds): Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China. Dordrecht, Springer Netherlands, 3–14. ISBN: 978-1-4020-6157-8
 
Sahrawat K.L. (2004): Organic matter accumulation in submerged soils. Advances in Agronomy, 81: 169–201.
 
Six J., Conant R.T., Paul E.A., Paustian K. (2002): Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241: 155–176. https://doi.org/10.1023/A:1016125726789
 
Smith P., Martino D., Cai Z.C., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G.X., Romanenkov V., Schneider U., Towprayoon S. (2007): Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 118: 6–28. https://doi.org/10.1016/j.agee.2006.06.006
 
Srinivasarao Ch., Venkateswarlu B., Lal R., Singh A.K., Kundu S., Vittal K.P.R., Patel J.J., Patel M.M. (2014): Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in Western India. Land Degradation and Development, 25: 173–183. https://doi.org/10.1002/ldr.1158
 
Sun Y.N., Huang S., Yu X.C., Zhang W.J. (2013): Stability and saturation of soil organic carbon in rice fields: evidence from a long-term fertilization experiment in subtropical China. Journal of Soils and Sediments, 13: 1327–1334. https://doi.org/10.1007/s11368-013-0741-z
 
Tong X.G., Xu M.G., Wang X.J., Bhattacharyya R., Zhang W.J., Cong R.H. (2014): Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena, 113: 251–259. https://doi.org/10.1016/j.catena.2013.08.005
 
Walter K., Don A., Tiemeyer B., Freibauer A. (2016): Determining soil bulk density for carbon stock calculations: a systematic method comparison. Soil Science Society of America Journal, 80: 579–591. https://doi.org/10.2136/sssaj2015.11.0407
 
Wang Y.D., Hu N., Xu M.G., Li Z.F., Lou Y.L., Chen Y., Wu C.Y., Wang Z.L. (2015): 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biology and Fertility of Soils, 51: 583–591. https://doi.org/10.1007/s00374-015-1007-2
 
Xu M., Tong X., Wang X. (2010): Effect of long-term fertilization on the sequestration rate of physical fractions of organic carbon in red soil of Southern China. In: Xu J., Huang P.M. (eds): Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone. Berlin, Heidelberg, Springer Berlin Heidelberg, 23–25. ISBN: 978-3-642-05297-2
 
Yan X., Zhou H., Zhu Q.H., Wang X.F., Zhang Y.Z., Yu X.C., Peng X. (2013): Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil and Tillage Research, 130: 42–51. https://doi.org/10.1016/j.still.2013.01.013
 
Yu G.H., Chen C.M., He X.H., Zhang X.Z., Li L.N. (2020): Unexpected bulk density and microstructures response to long-term pig manure application in a Ferralic Cambisol soil: implications for rebuilding a healthy soil. Soil and Tillage Research, 203: 104668. https://doi.org/10.1016/j.still.2020.104668
 
Zhang W.J., Xu M.G., Wang X.J., Huang Q.H., Nie J., Li Z.Z., Li S.L., Hwang S.W., Lee K.B. (2012): Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments, 12: 457–470. https://doi.org/10.1007/s11368-011-0467-8
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti