Development of soil phosphorus storage capacity for phosphorus retention/release assessment in neutral or alkaline soils
Bai J.H., Ye X.F., Jia J., Zhang G.L., Zhao Q.Q., Cui B.S., Liu X.H. (2017): Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 188: 677–688.
https://doi.org/10.1016/j.chemosphere.2017.08.117
Bai Z.H., Li H.G., Yang X.Y., Zhou B.K., Shi X.J., Wang B.R., Li D.C., Shen J.B., Chen Q., Qin W., Oenema O., Zhang F.S. (2013): The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 372: 27–37.
https://doi.org/10.1007/s11104-013-1696-y
Blombäck K., Bolster C.H., Lindsjö A., Hesse K., Linefur H., Parvage M.M. (2021): Comparing measures for determination of phosphorus saturation as a method to estimate dissolved P in soil solution. Geoderma, 383: 114708.
https://doi.org/10.1016/j.geoderma.2020.114708
Butler J.S., Coale F.J. (2005): Phosphorus leaching in manure-amended Atlantic Coastal Plain soils. Journal of Environmental Quality, 34: 370–381.
Carpenter S.R. (2008): Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences, 105: 11039–11040.
https://doi.org/10.1073/pnas.0806112105
Chrysostome M., Nair V., Harris W.G., Rhue R.D. (2007): Laboratory validation of soil phosphorus storage capacity predictions for use in risk assessment. Soil Science Society of America Journal, 71: 1564–1569.
https://doi.org/10.2136/sssaj2006.0094
Cui B.S., Yang Q.C., Yang Z.F., Zhang K.J. (2009): Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering, 35: 1090–1103.
https://doi.org/10.1016/j.ecoleng.2009.03.022
Dari B., Nair V.D., Colee J., Harris W.G., Mylavarapu R. (2015): Estimation of phosphorus isotherm parameters: a simple and cost-effective procedure. Frontiers in Environmental Science, 3: 70.
https://doi.org/10.3389/fenvs.2015.00070
Dari B., Nair V.D., Sharpley A.N., Kleinman P., Franklin D., Harris W.G. (2018): Consistency of the threshold phosphorus saturation ratio across a wide geographic range of acid soils. Agrosystems, Geosciences and Environment, 1: 54591464.
https://doi.org/10.2134/age2018.08.0028
Fang F., Brezonik P.L., Mulla D.J., Hatch L.K. (2002): Estimating runoff phosphorus losses from calcareous soils in the Minnesota River basin. Journal of Environmental Quality, 31: 1918–1929.
https://doi.org/10.2134/jeq2002.1918
Fischer P., Pöthig R., Gücker B., Venohr M. (2018): Phosphorus saturation and superficial fertilizer application as key parameters to assess the risk of diffuse phosphorus losses from agricultural soils in Brazil. The Science of the Total Environment, 630: 1515–1527.
https://doi.org/10.1016/j.scitotenv.2018.02.070
Fischer P., Pöthig R., Venohr M. (2017): The degree of phosphorus saturation of agricultural soils in Germany: current and future risk of diffuse P loss and implications for soil P management in Europe. Science of The Total Environment, 599–600: 1130–1139.
https://doi.org/10.1016/j.scitotenv.2017.03.143
Hongthanat N., Kovar J.L., Thompson M.L. (2011): Sorption indices to estimate risk of soil phosphorus loss in the Rathbun Lake watershed, Iowa. Soil Science, 176: 237–244.
https://doi.org/10.1097/SS.0b013e318214fa9b
Ige D.V., Akinremi O.O., Flaten D.N. (2005a): Environmental index for estimating the risk of phosphorus loss in calcareous soils of Manitoba. Journal of Environmental Quality, 34: 1944–1951.
https://doi.org/10.2134/jeq2004.0468
Ige D.V., Akinremi O.O., Flaten D.N., Ajiboye B., Kashem M.A. (2005b): Phosphorus sorption capacity of alkaline Manitoba soils and its relationship to soil properties. Canadian Journal of Soil Science, 85: 417–426.
https://doi.org/10.4141/S04-064
Li Y., Zhang H.B., Li Q.B., Zhou Q., Chen X.B., Tu C., Luo Y.M., Christie P., Hu X.F., Li L.Z. (2016a): Characteristics of residual organochlorine pesticides in soils under different land-use types on a coastal plain of the Yellow River Delta. Environmental Geochemistry and Health, 38: 535–547.
https://doi.org/10.1007/s10653-015-9738-4
Li Y., Zhang H.B., Tu C., Fu C.C., Xue Y., Luo Y.M. (2016b): Sources and fate of organic carbon and nitrogen from land to ocean: identified by coupling stable isotopes with C/N ratio. Estuarine, Coastal and Shelf Science, 181: 114–122.
https://doi.org/10.1016/j.ecss.2016.08.024
Liao X.L., Nair V.D., Canion A., Dobberfuhl D.R., Foster D.K., Inglett P.W. (2019): Subsurface transport and potential risk of phosphorus to groundwater across different land uses in a karst springs basin, Florida, USA. Geoderma, 338: 97–106.
https://doi.org/10.1016/j.geoderma.2018.11.005
Mukherjee A., Nair V.D., Clark M.W., Reddy K.R. (2009): Development of indices to predict phosphorus release from wetland soils. Journal of Environmental Quality, 38: 878–886.
https://doi.org/10.2134/jeq2008.0230
Murphy J., Riley J.P. (1962): A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31–36.
https://doi.org/10.1016/S0003-2670(00)88444-5
Nair V.D., Harris W.G. (2004): A capacity factor as an alternative to soil test phosphorus in phosphorus risk assessment. New Zealand Journal of Agricultural Research, 47: 491–497.
https://doi.org/10.1080/00288233.2004.9513616
Nair V.D., Harris W.G. (2014): Soil phosphorus storage capacity for environmental risk assessment. Advances in Agriculture, 2014: 723064.
Nair V.D., Reddy K.R. (2013): Phosphorus sorption and desorption in wetland soils. In: DeLaune R.D., Reddy K.R., Richardson C.J., Megonigal J.P. (eds.): Methods in Biogeochemistry of Wetlands, 10: 667–681. Madison, Soil Science Society of America. ISBN: 9780891189602
Nelson N.O., Parsons J.E., Mikkelsen R.L. (2005): Field-scale evaluation of phosphorus leaching in acid sandy soils receiving swine waste. Journal of Environmental Quality, 34: 2024–2035.
https://doi.org/10.2134/jeq2004.0445
Pote D.H., Daniel T.C., Moore P.A., Nichols D.J., Sharpley A.N., Edwards D.R. (1996): Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Science Society American Journal, 60: 855–859.
https://doi.org/10.2136/sssaj1996.03615995006000030025x
Richards L.A. (ed.) (1954): Diagnosis and Improvement of Saline and Alkali Soils. Washington, United States Department of Agriculture.
https://doi.org/10.1097/00010694-195408000-00012
Reddy K.R., Kadlec R.H., Flaig E., Gale P.M. (1999): Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology, 29: 83–146.
https://doi.org/10.1080/10643389991259182
Renneson M., Vandenberghe C., Dufey J., Marcoen J.M., Bock L., Colinet G. (2015): Degree of phosphorus saturation in agricultural loamy soils with a near-neutral pH. European Journal of Soil Science, 66: 33–41.
https://doi.org/10.1111/ejss.12207
Ulén B., Jakobsson C. (2005): Critical evaluation of measures to mitigate phosphorus losses from agricultural land to surface waters in Sweden. Science of the Total Environment, 344: 37–50.
https://doi.org/10.1016/j.scitotenv.2005.02.004
Xue Q.Y., Lu L.L., Zhou Y.Q., Qi L.Q., Dai P.B., Liu X.X., Sun C.L., Lin X.Y. (2014): Deriving sorption indices for the prediction of potential phosphorus loss from calcareous soils. Environmental Science and Pollution Research, 21: 1564–1571.
https://doi.org/10.1007/s11356-013-2045-7
Yin A.J., Gao C., Zhang M., Wu P.B., Yang X.H. (2017): Rapid changes in phosphorus species in soils developed on reclaimed tidal flat sediments. Geoderma, 307: 46–53.
https://doi.org/10.1016/j.geoderma.2017.07.034
Yu J.B., Lv X.F., Bin M., Wu H.F., Du S.Y., Zhou M., Yang Y.M., Han G.X. (2015): Fractal features of soil particle size distribution in newly formed wetlands in the Yellow River Delta. Scientific Reports, 5: 10540.
https://doi.org/10.1038/srep10540
Zhou D., Yu M., Yu J.B., Li Y.Z., Guan B., Wang X.H., Wang Z.K., Lv Z.B., Qu F.Z., Yang J.S. (2021): Impacts of inland pollution input on coastal water quality of the Bohai Sea. Science of The Total Environment, 765: 142691.
https://doi.org/10.1016/j.scitotenv.2020.142691