Garden pansy (Viola × wittrockiana Gams.) – a good candidate for the revitalisation of polluted areas K., Słomka A., Kuta E. (2020): Garden pansy (Viola × wittrockiana Gams.) – a good candidate for the revitalisation of polluted areas. Plant Soil Environ., 66: 272-280.
download PDF

In the current studies, heavy metal tolerance level, accumulation efficiency and sexual reproduction were determined in Viola × wittrockiana, a non-metallophytic ornamental cultivar in comparison to V. tricolor, a metallophyte, after zinc (Zn) or lead (Pb) treatment (0, 10, 100 and 1 000 ppm) in pot experiments. The seed germination frequency that was not reduced in comparison to the control, the effective Zn absorption from the soil and exclusion strategy for Pb, as well as the regular sexual reproduction of V. × wittrockiana treated with heavy metals all indicate the tolerance of this plant to heavy metals. The lack of a seed set under experimental conditions of V. × wittrockiana was due to the absence of pollinators, rather than the negative impact of heavy metals, as pollen viability and ovule  development were normal under the treatments. The results indicate that V. × wittrockiana represents similar tolerance to Viola metallophytes and could be considered as a good material for the reclamation of polluted areas. The exceptional tolerance to heavy metals, the ability to initiate new generations in heavy-metal-burdened soil, which are additionally coupled with the unique beauty, make the garden pansy a good candidate to be potentially used in the future for phytoremediation purposes.

Adams S.R., Pearson S., Hadley P. (1997): An analysis of the effects of temperature and light integral on the vegetative growth of pansy cv. universal violet (Viola × wittrockiana Gams.). Annals of Botany, 79: 219–225.
Baker A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C. (2000): Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N., Bañuelos G. (eds.): Phytoremediation of Contaminated Soil and Water. Boca Raton, CRC Press, 85–107. ISBN 9780367399436
Banásová V., Horak O., Čiamporová M., Nadubinská M., Lichtscheidl I. (2006): The vegetation of metalliferous and non-metalliferous grasslands in two former mine regions in Central Slovakia. Biologia, 61: 433–439.
Bothe H., Słomka A. (2017): Divergent biology of facultative heavy metal plants. Journal of Plant Physiology, 219: 45–61.
Dalbato A.L., Kobza F., Suchánková P. (2005): Polyploidy effects on frost tolerance and winter survival of garden pansy genotypes. Horticultural Science, 32: 138–146.
Dalbato A.L., Kobza F., Karlsson L.M. (2013): Effect of polyploidy and pollination methods on capsule and seed set of pansies (Viola × wittrockiana Gams). Horticultural Science, 40: 22–30.
Du X.H., Wang M.G., Słomka A., Liu H.C. (2018): Karyologic and heterosis studies of the artificial inter- and intraspecific hybrids of Viola × wittrockiana and Viola cornuta. HortScience: a publication of the American Society for Horticultural Science, 53: 1300–1305.
Ernst W.H.O. (2006): Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80: 251–274.
Fernandes L., Casal S., Pereira J.A., Saraiva J.A., Ramalhosa E. (2017): Edible flowers: a review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60: 38–50.
Gao J., Luo M., Zhu Y., He Y., Wang Q., Zhang C. (2015): Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution. Biochemical and Biophysical Research Communications, 459: 60–65.
Ho J.R., Ma H.W., Wang Y.C., Ko C.H., Chang F.C., Feng F.L., Wang Y.N. (2014): Extraction of heavy metals from contaminated soil by Cinnamomum camphora. Ecotoxicology, 23: 1987–1995.
Kuta E., Bohdanowicz J., Słomka A., Pilarska M., Bothe H. (2012): Floral structure and pollen morphology of two zinc violets (Viola lutea ssp. calaminaria and V. lutea ssp. westfalica) indicate their taxonomic affinity to Viola lutea. Plant Systematics and Evolution, 298: 445–455.
Kuta E., Jędrzejczyk-Korycińska M., Cieślak E., Rostański A., Szczepaniak M., Migdałek G., Wąsowicz P., Suda J., Combik M., Słomka A. (2014): Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content. Plant Biology, 16: 924–934.
Kroon G.H. (1972): Some aspects of the pollination mechanism of Viola tricolor L. and Viola × wittrockiana Gams. Acta Botanica Neerlandica, 21: 630–632.
Kwiatkowska M., Żabicka J., Migdałek G., Żabicki P., Cubała M., Bohdanowicz J., Słomka A., Jędrzejczyk-Korycińska M., Sliwinska E., Sychta K., Marcussen T., Thiele K., Kuta E. (2019): Comprehensive characteristics and genetic diversity of the endemic Australian Viola banksii (section Erpetion, Violaceae). Australian Journal of Botany, 67: 81–98.
Li M.S., Luo Y.P., Su Z.Y. (2007): Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental Pollution, 147: 168–175.
Liu J.N., Zhou Q.X., Sun T., Ma L.Q., Wang S. (2008): Identification and chemical enhancement of two ornamental plants for phytoremediation. Bulletin of Environmental Contamination and Toxicology, 80: 260–265.
Migdałek G., Woźniak M., Słomka A., Godzik B., Jędrzejczyk-Korycińska M., Rostański A., Bothe H., Kuta E. (2013): Morphological differences between violets growing at heavy metal polluted and non-polluted sites. Flora – Morphology, Distribution, Functional Ecology of Plants, 208: 87–96.
Peng Z., Guo Z.H., Cao X., Xiao X.Y., Liu Y., Shi L. (2018): Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. International Journal of Phytoremediation, 20: 311–320.
Psaras G.K., Constantinidis T. (2009): Two new nickel hyperaccumulators from the Greek serpentine flora. Fresenius Environmental Bulletin, 18: 798–803.
Reboredo F.H., Pelica J., Lidon F.C., Ramalho J.C., Pessoa M.F., Calvão T., Simões M., Guerra M. (2018): Heavy metal content of edible plants collected close to an area of intense mining activity (southern Portugal). Environmental Monitoring and Assessment, 190: 484.
Reeves R.D., Baker A.J.M., Jaffré T., Erskine P.D., Echevarria G., van der Ent A. (2017): A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218: 407–411.
Shumaker K., Begonia G. (2005): Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials. International Journal of Environmental Research and Public Health, 2: 293–298.
Singh R.J. (2003): Plant Cytogenetics. Boca Raton, CRC Press. ISBN: 0-8493-2388-6
Słomka A., Libik-Konieczny M., Kuta E., Miszalski Z. (2008): Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. Journal of Plant Physiology, 165: 1610–1619.
Słomka A., Kuta E., Szarek-Łukaszewska G., Godzik B., Kapusta P., Tylko G., Bothe H. (2011): Violets of the section Melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps. Journal of Plant Physiology, 168: 1191–1199.
Słomka A., Kwiatkowska M., Jędrzejczyk-Korycińska M., Bohdanowicz J., Poznańska P., Shuka L., Borucki W., Kuta E. (2017): Insight into "serpentine syndrome" of Albanian, endemic violets (Viola L., Melanium Ging. section) – Looking for unique, adaptive microstructural floral, and embryological characters. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 151: 1022–1034.
Sychta K., Słomka A., Suski S., Fiedor E., Gregoraszczuk E., Kuta E. (2018): Suspended cells of metallicolous and nonmetallicolous
Viola species tolerate, accumulate and detoxify zinc and lead. Plant Physiology and Biochemistry, 132: 666–674.
Sychta K., Słomka A., Sliwinska E., Migdałek G., Kuta E. (2020): From cells highly tolerant to Zn and Pb to fully fertile plants – Selection of tolerant lines with in vitro culture. Plant Physiology and Biochemistry, 146: 231–237.
Tangahu B.V., Abdullah S.R.S., Basri H., Idris M., Anuar N., Mukhlisin M. (2011): A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 939161.
Van der Ent A., Baker A.J.M., Reeves R.D., Pollard A.J., Schat H. (2013): Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362: 319–334.
Wierzbicka M., Rostański A. (2002): Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland:
a review. Acta Biologica Cracoviensia. Series Botanica, 44: 7–19.
Wittrock V.B. (1895): Viola-Studier – A contribution to the history of the pansies having special reference to their origin. Acta Horti Bergiani, 2: 441–522.
Wu F.Z., Yang W.Q., Zhang J., Zhou L.Q. (2011): Growth responses and metal accumulation in an ornamental plant (Osmanthus fragrans var. thunbergii) submitted to different Cd levels. International Scholarly Research Notices, 738138.
download PDF

© 2020 Czech Academy of Agricultural Sciences