Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil

https://doi.org/10.17221/522/2021-PSECitation:

Sun Z.H., Hu Y., Shi L., Li G., Pang Z., Liu S.Q., Chen Y.M., Jia B.B. (2022): Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil Environ., 68: 272–289.

download PDF

Improved soil properties are commonly reported benefits of adding biochar to agriculture soils. To investigate the range of biochar’s effects on soil chemical properties (e.g., soil pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic carbon (SOC), soil total carbon (TC), and soil carbon-nitrogen ratio (C : N ratio)) in response to varied experimental conditions, a meta-analysis was conducted on previously published results. The results showed that the effect of biochar on soil chemical properties varied depending on management conditions, soil properties, biochar pyrolysis conditions, and biochar properties. The effect size (Hedges’d) of the biochar was greatest for SOC (0.50), the C : N ratio of soil (0.44), soil pH (0.39), TC (0.35), EC (0.21), and CEC (0.20). Among the various factors examined by aggregated boosted tree analysis, the effects of biochar on soil chemical properties were largely explained by the biochar application rate, initial soil pH, and soil sand content. In conclusion, our study suggests that improving soil chemical properties by adding biochar not only requires consideration of biochar application rates and chemical properties but also the local soil environmental factors, especially soil initial pH and sand content of the soil, should be considered.

References:
Abujabhah I.S., Bound S.A., Doyle R., Bowman J.P. (2016a): Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98: 243–253. https://doi.org/10.1016/j.apsoil.2015.10.021
 
Abujabhah I.S., Doyle R., Bound S.A., Bowman J.P. (2016b): The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. Journal of Soils and Sediments, 16: 2211–2222. https://doi.org/10.1007/s11368-016-1411-8
 
Adams C., Soares K. (1997): The Cochrane Collaboration and the Process of Systematic Reviewing. Advances in Psychiatric Treatment, 3: 240–246. https://doi.org/10.1192/apt.3.4.240
 
Agegnehu G., Nelson P.N., Bird M.I. (2016): The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Science of The Total Environment, 569–570: 869–879. https://doi.org/10.1016/j.scitotenv.2016.05.033
 
Agegnehu G., Srivastava A.K., Bird M.I. (2017): The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Applied Soil Ecology, 119: 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008
 
Ahmad M., Rajapaksha A.U., Lim J.E., Ming Z., Bolan N., Mohan D., Vithanage M., Lee S.S., Ok Y.S. (2014): Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
 
Ajayi A.E., Horn R. (2016): Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil and Tillage Research, 164: 34–44. https://doi.org/10.1016/j.still.2016.01.011
 
Alotaibi K.D., Schoenau J.J. (2016): Application of two bioenergy byproducts with contrasting carbon availability to a prairie soil: three year crop response and changes in soil biological and chemical properties. Agronomy, 6: 13. https://doi.org/10.3390/agronomy6010013
 
Arft A.M., Walker M.D., Gurevitch J., Alatalo J.M., Bret-Harte M.S., Dale M., Diemer M., Gugerl F., Henry G.H.R., Jones M.H., Hollister R.D., Jónsdóttir I.S., Laine K., Lévesque E., Marion G.M., Molau U., Molgaard P., Nordenhäll U., Raszhivin V., Robinson C.H., Starr G., Stenström A., Stenström M., Totland O., Turner P.L., Walker L.J., Webber P.J., Welker J.M., Wookey P.A. (1999): Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 69: 491–511. https://doi.org/10.2307/2657227
 
Bayabil H.K., Stoof C.R., Lehmann J.C., Yitaferu B., Steenhuis T.S. (2015): Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: the Anjeni watershed. Geoderma, 243–244: 115–123. https://doi.org/10.1016/j.geoderma.2014.12.015
 
Bera T., Collins H.P., Alva A.K., Purakayastha T.J., Patra A.K. (2016): Biochar and manure effluent effects on soil biochemical properties under corn production. Applied Soil Ecology, 107: 360–367. https://doi.org/10.1016/j.apsoil.2016.07.011
 
Borchard N., Schirrmann M., Cayuela M.L., Kammann C., Wrage-Mönnig N., Estavillo J.M., Fuertes-Mendizábal T., Sigua G., Spokas K., Ippolito J.A., Novak J. (2019): Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Science of The Total Environment, 651: 2354–2364. https://doi.org/10.1016/j.scitotenv.2018.10.060
 
Borchard N., Siemens J., Ladd B., Möller A., Amelung W. (2014): Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144: 184–194. https://doi.org/10.1016/j.still.2014.07.016
 
Burrell L.D., Zehetner F., Rampazzo N., Wimmer B., Soja G. (2016): Long-term effects of biochar on soil physical properties. Geoderma, 282: 96–102. https://doi.org/10.1016/j.geoderma.2016.07.019
 
Case S.D.C., McNamara N.P., Reay D.S., Whitaker J. (2012): The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil – the role of soil aeration. Soil Biology and Biochemistry, 51: 125–134. https://doi.org/10.1016/j.soilbio.2012.03.017
 
Cayuela M.L., Aguilera E., Sanz-Cobena A., Adams D.C., Abalos D., Barton L., Ryals R., Silver W.L., Alfaro M.A., Pappa V.A., Smith P., Garnier J., Billen G., Bouwman L., Bondeau A., Lassaletta L. (2017): Direct nitrous oxide emissions in Mediterranean climate cropping systems: emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 238: 25–35. https://doi.org/10.1016/j.agee.2016.10.006
 
Cayuela M.L., van Zwieten L., Singh B.P., Jeffery S., Roig A., Sánchez-Monedero M.A. (2014): Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agriculture, Ecosystems and Environment, 191: 5–16. https://doi.org/10.1016/j.agee.2013.10.009
 
Chen D., Liu X.Y., Bian R.J., Cheng K., Zhang X.H., Zheng J.F., Joseph S., Crowley D., Pan G.X., Li L.Q. (2018): Effects of biochar on availability and plant uptake of heavy metals – a meta-analysis. Journal of Environmental Management, 222: 76–85. https://doi.org/10.1016/j.jenvman.2018.05.004
 
Cheng J.Z., Lee X.Q., Gao W.C., Chen Y., Pan W., Tang Y. (2017): Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Applied Soil Ecology, 121: 185–192. https://doi.org/10.1016/j.apsoil.2017.10.009
 
Cleveland C.C., Liptzin D. (2007): C : N : P stoichiometry in soil: is there a "redfield ratio" for the microbial biomass? Biogeochemistry, 85: 235–252. https://doi.org/10.1007/s10533-007-9132-0
 
Corwin D.L., Lesch S.M. (2005): Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46: 11–43. https://doi.org/10.1016/j.compag.2004.10.005
 
Dai Y.H., Zheng H., Jiang Z.X., Xing B.S. (2020): Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis. Science of The Total Environment, 713: 136635. https://doi.org/10.1016/j.scitotenv.2020.136635
 
De la Rosa J.M., Paneque M., Miller A.Z., Knicker H. (2014): Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Science of The Total Environment, 499: 175–184. https://doi.org/10.1016/j.scitotenv.2014.08.025
 
Deal C., Brewer C.E., Brown R.C., Okure M.A.E., Amoding A. (2012): Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass and Bioenergy, 37: 161–168. https://doi.org/10.1016/j.biombioe.2011.12.017
 
Edeh I.G., Mašek O., Buss W. (2020): A meta-analysis on biochar’s effects on soil water properties – new insights and future research challenges. Science of The Total Environment, 714: 136857. https://doi.org/10.1016/j.scitotenv.2020.136857
 
El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., Zimmerman A.R., Ahmad M., Shaheen S.M., Ok Y.S. (2019): Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337: 536–554. https://doi.org/10.1016/j.geoderma.2018.09.034
 
Ersahin S., Gunal H., Kutlu T., Yetgin B., Coban S. (2006): Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma, 136: 588–597. https://doi.org/10.1016/j.geoderma.2006.04.014
 
Faloye O.T., Alatise M.O., Ajayi A.E., Ewulo B.S. (2019): Effects of biochar and inorganic fertilizer applications on growth, yield and water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217: 165–178. https://doi.org/10.1016/j.agwat.2019.02.044
 
Farhangi-Abriz S., Torabian S., Qin R., Noulas C., Lu Y., Gao S. (2021): Biochar effects on yield of cereal and legume crops using meta-analysis. Science of the Total Environment, 775: 145869. https://doi.org/10.1016/j.scitotenv.2021.145869
 
Fedrowitz K., Koricheva J., Baker S.C., Lindenmayer D.B., Palik B., Rosenvald R., Beese W., Franklin J.F., Kouki J., Macdonald E., Messier C., Sverdrup-Thygeson A., Gustafsson L. (2014): Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology, 51: 1669–1679. https://doi.org/10.1111/1365-2664.12289
 
Foereid B., Lehmann J., Major J. (2011): Modeling black carbon degradation and movement in soil. Plant and Soil, 345: 223–236. https://doi.org/10.1007/s11104-011-0773-3
 
Gao S., DeLuca T.H., Cleveland C.C. (2019): Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Science of The Total Environment, 654: 463–472. https://doi.org/10.1016/j.scitotenv.2018.11.124
 
Gao Y., Shao G.C., Yang Z., Zhang K., Lu J., Wang Z.Y., Wu S.Q., Xu D. (2021): Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: a meta-analysis. European Journal of Agronomy, 130: 126345. https://doi.org/10.1016/j.eja.2021.126345
 
Giagnoni L., Maienza A., Baronti S., Vaccari F.P., Genesio L., Taiti C., Martellini T., Scodellini R., Cincinelli A., Costa C., Mancuso S., Renella G. (2019): Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma, 344: 127–136. https://doi.org/10.1016/j.geoderma.2019.03.011
 
Gregory P.J., Nortcliff S. (2013): Soil Conditions and Plant Growth. 1st Edition. Oxford, Blackwell Publishing Ltd. ISBN: 9781405197700
 
Gurevitch J., Koricheva J., Nakagawa S., Stewart G. (2018): Meta-analysis and the science of research synthesis. Nature, 555: 175–182. https://doi.org/10.1038/nature25753
 
Hagner M., Kemppainen R., Jauhiainen L., Tiilikkala K., Setälä H. (2016): The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil and Tillage Research, 163: 224–234. https://doi.org/10.1016/j.still.2016.06.006
 
Hailegnaw N.S., Mercl F., Pračke K., Száková J., Tlustoš P. (2019): Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19: 2405–2416. https://doi.org/10.1007/s11368-019-02264-z
 
Hall D.J.M., Bell R.W. (2015): Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia. Pedosphere, 25: 720–728. https://doi.org/10.1016/S1002-0160(15)30053-9
 
Hartley W., Riby P., Waterson J. (2016): Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. Journal of Environmental Management, 181: 770–778. https://doi.org/10.1016/j.jenvman.2016.07.023
 
Hedges L.V., Olkin I. (1985): Statistical Methods for Meta-Analysis. New York, Academic Press.
 
Hedges L.V., Gurevitch J., Curtis P.S. (1999): The meta-analysis of response ratios in experimental ecology. Ecology, 80: 1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
 
Herath H.M.S.K., Camps-Arbestain M., Hedley M. (2013): Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209–210: 188–197.
 
Hijmans R.J., Phillips S., Leathwick J., Elith J. (2017): Species distribution modelling with R. R package "Dismo". Available at: https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (accessed March 13, 2018)
 
Jeffery S., Meinders M.B.J., Stoof C.R., Bezemer T.M., van de Voorde T.F.J., Mommer L., van Groenigen J.W. (2015): Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 251–252: 47–54. https://doi.org/10.1016/j.geoderma.2015.03.022
 
Jeffery S., Verheijen F.G.A., Kammann C., Abalos D. (2016): Biochar effects on methane emissions from soils: a meta-analysis. Soil Biology and Biochemistry, 101: 251–258. https://doi.org/10.1016/j.soilbio.2016.07.021
 
Jiang Y., Carrijo D., Huang S., Chen J., Balaine N., Zhang W.J., van Groenigen K.J., Linquist B. (2019): Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Research, 234: 47–54. https://doi.org/10.1016/j.fcr.2019.02.010
 
Jien S., Wang C. (2013): Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110: 225–233. https://doi.org/10.1016/j.catena.2013.06.021
 
Jindo K., Sánchez-Monedero M.A., Hernández T., García C., Furukawa T., Matsumoto K. (2012): Biochar influences the microbial community structure during manure composting with agricultural wastes. Science of The Total Environment, 416: 476–481. https://doi.org/10.1016/j.scitotenv.2011.12.009
 
Jones D.L., Murphy D.V., Khalid M., Ahmad W., Edwards-Jones G., DeLuca T.H. (2011): Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry, 43: 1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018
 
Kätterer T., Roobroeck D., Andrén O., Kimutai G., Karltun E., Kirchmann H., Nyberg G., Vanlauwe B., Röing De Nowina K. (2019): Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 235: 18–26. https://doi.org/10.1016/j.fcr.2019.02.015
 
Kirkby C.A., Richardson A.E., Wade L.J., Passioura J.B., Batten G.D., Blanchard C., Kirkegaard J.A. (2014): Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68: 402–409. https://doi.org/10.1016/j.soilbio.2013.09.032
 
Laghari M., Mirjat M.S., Hu Z.Q., Fazal S., Xiao B., Hu M., Chen Z., Guo D. (2015): Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135: 313–320. https://doi.org/10.1016/j.catena.2015.08.013
 
Laird D.A., Novak J.M., Collins H.P., Ippolito J.A., Karlen D.L., Lentz R.D., Sistani K.R., Spokas K., Van Pelt R.S. (2017): Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 289: 46–53. https://doi.org/10.1016/j.geoderma.2016.11.025
 
Lebrun M., Miard F., Nandillon R., Scippa G.S., Bourgerie S., Morabito D. (2019): Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere, 222: 810–822. https://doi.org/10.1016/j.chemosphere.2019.01.188
 
Lehmann J., Joseph S. (2009): Biochar for environmental management: an introduction. In: Lehmann J., Joseph S. (eds.): Biochar for Environmental Management Science and Technology. UK, Earthscans, 1–12. ISBN: 9780367779184
 
Li M.F., Wang J., Guo D., Yang R.R., Fu H. (2019): Effect of land management practices on the concentration of dissolved organic matter in soil: a meta-analysis. Geoderma, 344: 74–81. https://doi.org/10.1016/j.geoderma.2019.03.004
 
Li X.X., Chen X.B., Weber-Siwirska M., Cao J.J., Wang Z.L. (2018): Effects of rice-husk biochar on sand-based rootzone amendment and creeping bentgrass growth. Urban Forestry and Urban Greening, 35: 165–173. https://doi.org/10.1016/j.ufug.2018.09.001
 
Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizão F.J., Petersen J., Neves E.G. (2006): Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719–1730. https://doi.org/10.2136/sssaj2005.0383
 
Liang C.F., Gascó G., Fu S.L., Méndez A., Paz-Ferreiro J. (2016): Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil and Tillage Research, 164: 3–10. https://doi.org/10.1016/j.still.2015.10.002
 
Lin Z.B., Liu Q., Liu G., Cowie A.L., Bei Q.C., Liu B.J., Wang X.J., Ma J., Zhu J.G., Xie Z.B. (2017): Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China. Pedosphere, 27: 248–261. https://doi.org/10.1016/S1002-0160(17)60314-X
 
Liu C., Wang H.L., Li P.H., Xian Q.S., Tang X.G. (2019a): Biochar’s impact on dissolved organic matter (DOM) export from a cropland soil during natural rainfalls. Science of The Total Environment, 650: 1988–1995. https://doi.org/10.1016/j.scitotenv.2018.09.356
 
Liu X., Mao P.N., Li L.H., Ma J. (2019b): Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis. Science of The Total Environment, 656: 969–976. https://doi.org/10.1016/j.scitotenv.2018.11.396
 
Lyu H.H., Gao B., He F., Zimmerman A.R., Ding C., Huang H., Tang J.C. (2018): Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environmental Pollution, 233: 54–63. https://doi.org/10.1016/j.envpol.2017.10.037
 
Meng J., Tao M.M., Wang L.L., Liu X.M., Xu J.M. (2018): Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Science of the Total Environment, 633: 300–307. https://doi.org/10.1016/j.scitotenv.2018.03.199
 
Minasny B., McBratney A.B., Brough D.M., Jacquier D. (2011): Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, 62: 728–732. https://doi.org/10.1111/j.1365-2389.2011.01386.x
 
Molnár M., Vaszita E., Farkas É., Ujaczki É., Fekete-Kertész I., Tolner M., Klebercz O., Kirchkeszner C., Gruiz K., Uzinger N., Feigl V. (2016): Acidic sandy soil improvement with biochar – a microcosm study. Science of The Total Environment, 563–564: 855–865. https://doi.org/10.1016/j.scitotenv.2016.01.091
 
Mukherjee A., Lal R., Zimmerman A.R. (2014): Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment, 487: 26–36. https://doi.org/10.1016/j.scitotenv.2014.03.141
 
Mukherjee A., Zimmerman A.R. (2013): Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma, 193–194: 122–130. https://doi.org/10.1016/j.geoderma.2012.10.002
 
Norini M.-P., Thouin H., Miard F., Battaglia-Brunet F., Gautret P., Guégan R., Le Forestier L., Morabito D., Bourgerie S., Motelica-Heino M. (2019): Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of Environmental Management, 232: 117–130.
 
Obalum S.E., Watanabe Y., Igwe C.A., Obi M.E., Wakatsuki T. (2013): Improving on the prediction of cation exchange capacity for highly weathered and structurally contrasting tropical soils from their fine-earth fractions. Communications in Soil Science and Plant Analysis, 44: 1831–1848. https://doi.org/10.1080/00103624.2013.790401
 
Omondi M.O., Xia X., Nahayo A., Liu X.Y., Korai P.K., Pan G.X. (2016): Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274: 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029
 
Pandey V., Patel A., Patra D.D. (2016): Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecological Engineering, 90: 361–366. https://doi.org/10.1016/j.ecoleng.2016.01.020
 
Peake L.R., Reid B.J., Tang X.G. (2014): Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma, 235–236: 182–190. https://doi.org/10.1016/j.geoderma.2014.07.002
 
Pranagal J., Oleszczuk P., Tomaszewska-Krojańska D., Kraska P., Różyło K. (2017): Effect of biochar application on the physical properties of Haplic Podzol. Soil and Tillage Research, 174: 92–103. https://doi.org/10.1016/j.still.2017.06.007
 
Purakayastha T.J., Bera T., Bhaduri D., Sarkar B., Mandal S., Wade P., Kumari S., Biswas S., Menon M., Pathak H., Tsang D.C.W. (2019): A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere, 227: 345–365. https://doi.org/10.1016/j.chemosphere.2019.03.170
 
Razzaghi F., Obour P.B., Arthur E. (2020): Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361: 114055. https://doi.org/10.1016/j.geoderma.2019.114055
 
Sandhu S.S., Ussiri D.A.N., Kumar S., Chintala R., Papiernik S.K., Malo D.D., Schumacher T.E. (2017): Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation. Chemosphere, 184: 473–481. https://doi.org/10.1016/j.chemosphere.2017.05.165
 
Shaaban M., Van Zwieten L., Bashir S., Younas A., Núñez-Delgado A., Chhajro M.A., Kubar K.A., Ali U., Rana M.S., Mehmood M.A., Hu R.G. (2018): A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228: 429–440. https://doi.org/10.1016/j.jenvman.2018.09.006
 
Šimek M., Cooper J.E. (2002): The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53: 345–354. https://doi.org/10.1046/j.1365-2389.2002.00461.x
 
Slavich P.G., Sinclair K., Morris S.G., Kimber S.W.L., Downie A., Van Zwieten L. (2013): Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant and Soil, 366: 213–227. https://doi.org/10.1007/s11104-012-1412-3
 
Stefaniuk M., Oleszczuk P., Różyło K. (2017): Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Science of The Total Environment, 599–600: 854–862. https://doi.org/10.1016/j.scitotenv.2017.05.024
 
Tan Z.X., Lin C.S.K., Ji X.Y., Rainey T.J. (2017): Returning biochar to fields: a review. Applied Soil Ecology, 116: 1–11. https://doi.org/10.1016/j.apsoil.2017.03.017
 
Unger R., Killorn R., Brewer C.E. (2011): Effects of soil application of different biochars on selected soil chemical properties. Communications in Soil Science and Plant Analysis, 42: 2310–2321. https://doi.org/10.1080/00103624.2011.605489
 
Vaccari F.P., Maienza A., Miglietta F., Baronti S., Di Lonardo S., Giagnoni L., Lagomarsino A., Pozzi A., Pusceddu E., Ranieri R., Valboa G., Genesio L. (2015): Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment, 207: 163–170. https://doi.org/10.1016/j.agee.2015.04.015
 
Verhoeven E., Six J. (2014): Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agriculture, Ecosystems and Environment, 191: 27–38. https://doi.org/10.1016/j.agee.2014.03.008
 
Wang D.Y., Fonte S.J., Parikh S.J., Six J., Scow K.M. (2017): Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, 303: 110–117. https://doi.org/10.1016/j.geoderma.2017.05.027
 
Wong J.T.F., Chen X.W., Deng W.J., Chai Y.M., Ng C.W.W., Wong M.H. (2019): Effects of biochar on bacterial communities in a newly established landfill cover topsoil. Journal of Environmental Management, 236: 667–673. https://doi.org/10.1016/j.jenvman.2019.02.010
 
Yao Q., Liu J.J., Yu Z.H., Li Y.S., Jin J., Liu X.B., Wang G.H. (2017): Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Applied Soil Ecology, 113: 11–21. https://doi.org/10.1016/j.apsoil.2017.01.007
 
Yu H.W., Zou W.X., Chen J.J., Chen H., Yu Z., Huang J., Tang H.R., Wei X.Y., Gao B. (2019): Biochar amendment improves crop production in problem soils: a review. Journal of Environmental Management, 232: 8–21.
 
Zhang W.S., Liang Z.Y., He X.M., Wang X.Z., Shi X., Zou C., Chen X. (2019): The effects of controlled release urea on maize productivity and reactive nitrogen losses: a meta-analysis. Environmental Pollution, 246: 559–565. https://doi.org/10.1016/j.envpol.2018.12.059
 
Zheng J.F., Han J.M., Liu Z.W., Xia W.B., Zhang X.H., Li L.Q., Liu X.Y., Bian R.J., Cheng K., Zheng J.W., Pan G.X. (2017): Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture, Ecosystems and Environment, 241: 70–78. https://doi.org/10.1016/j.agee.2017.02.034
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti