Unravelling the composition of soil belowground microbial community before sowing transgenic cotton

https://doi.org/10.17221/523/2017-PSECitation:Vital L., Narvaez J.A., Cruz M.A., Ortiz E.L., Sanchez E., Mendoza A. (2017): Unravelling the composition of soil belowground microbial community before sowing transgenic cotton. Plant Soil Environ., 63: 512-518.
download PDF
Soils harbour enormously diverse bacterial communities that interact specifically with plants generating beneficial interactions between them. This study was the first approach to assess bacterial communities before sowing with three cotton genotypes, including both transgenic and conventional ones. The structure of bacterial communities was identified using the next generation sequencing analysis, ion torrent PGM (Personal Genome Machine™) sequencer technology, based on the V2–V3 16S rRNA gene region. Quantitative insights into microbial ecology pipeline were used to identify the structure and diversity of bacterial communities in bulk soil samples collected in the northeast of Mexico. Bulk soil textures and chemical properties, including most nutrients, were homogeneous in these bulk soil samples. Relative abundance analysis showed similar bacterial community structures. Dominant taxonomic phyla were Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria, Gemmatimonadetes and Bacteroidetes, whereas the main families were Bacillaceae, Chitinophagaceae and Rhodospirillaceae with an abundance average of BS1 (bulk soil sample), BS2 and BS3 (24.85, 19.74 and 19.71%, respectively). Alpha diversity analysis showed a high diversity (Shannon and Simpson index) and a large value of the observed species found in bulk soils samples. These results allowed establishing the previous bacterial structural community in an unused soil before sowing it with a transgenic crop for the first time.
Acosta-Martínez V., Dowd S.E., Sun Y., Wester D., Allen V. (2010): Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Applied Soil Ecology, 45, 13-25  https://doi.org/10.1016/j.apsoil.2010.01.005
Berg Gabriele, Smalla Kornelia (2009): Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1-13  https://doi.org/10.1111/j.1574-6941.2009.00654.x
Caporaso J Gregory, Kuczynski Justin, Stombaugh Jesse, Bittinger Kyle, Bushman Frederic D, Costello Elizabeth K, Fierer Noah, Peña Antonio Gonzalez, Goodrich Julia K, Gordon Jeffrey I, Huttley Gavin A, Kelley Scott T, Knights Dan, Koenig Jeremy E, Ley Ruth E, Lozupone Catherine A, McDonald Daniel, Muegge Brian D, Pirrung Meg, Reeder Jens, Sevinsky Joel R, Turnbaugh Peter J, Walters William A, Widmann Jeremy, Yatsunenko Tanya, Zaneveld Jesse, Knight Rob (2010): QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336  https://doi.org/10.1038/nmeth.f.303
DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L. (2006): Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72, 5069-5072  https://doi.org/10.1128/AEM.03006-05
Dunfield K. E., Germida J. J. (2003): Seasonal Changes in the Rhizosphere Microbial Communities Associated with Field-Grown Genetically Modified Canola (Brassica napus). Applied and Environmental Microbiology, 69, 7310-7318  https://doi.org/10.1128/AEM.69.12.7310-7318.2003
Edgar Robert C. (2010): Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461  https://doi.org/10.1093/bioinformatics/btq461
Fierer Noah, Bradford Mark A., Jackson Robert B. (2007): TOWARD AN ECOLOGICAL CLASSIFICATION OF SOIL BACTERIA. Ecology, 88, 1354-1364  https://doi.org/10.1890/05-1839
Gałązka A., Gawryjołek K., Grządziel J., Frąc M., Księżak J. (2017a): Microbial community diversity and the interaction of soil under maize growth in different cultivation techniques. Plant, Soil and Environment, 63: 264–270.
Gałązka A., Gawryjołek K., Grządziel J., Księżak J. (2017b): Effect of different agricultural management practices on soil biological parameters including glomalin fraction. Plant, Soil and Environment, 63: 300–306.
Garza-Cano I., Pecina-Quintero V., Díaz-Franco A., Williams-Alanís H., Ramírez-De León A. (2005): Sorghum cultivated with biofertilizers, fitohormones, and inorganic phosphorus. Terra Latinoamericana, 23: 581–586.
Grifoni Annamaria, Bazzicalupo Marco, Di Serio Claudia, Fancelli Silvia, Fani renato (1995): Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiology Letters, 127, 85-91  https://doi.org/10.1111/j.1574-6968.1995.tb07454.x
Hodgson D.A. (2000): Primary metabolism and its control in streptomycetes: A most unusual group of bacteria. Advances in Microbial Physiology, 42: 47–238.
Hong Huynh A., To Ellen, Fakhry Saad, Baccigalupi Loredana, Ricca Ezio, Cutting Simon M. (2009): Defining the natural habitat of Bacillus spore-formers. Research in Microbiology, 160, 375-379  https://doi.org/10.1016/j.resmic.2009.06.006
Janssen P. H. (2006): Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Applied and Environmental Microbiology, 72, 1719-1728  https://doi.org/10.1128/AEM.72.3.1719-1728.2006
Kennedy A.C. (1999): Microbial diversity in agroecosystem quality. In: Collins W.W., Qualset C.O. (eds.): Biodiversity in Agroecosystems. Boca Raton, CRC Press, 1–17.
Kersters K., De Vos P., Gillis M., Swings J., Vandamme P., Stackebrandt E. (2006): Introduction to the Proteobacteria. In: Dwarkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackebrandt E. (eds): The Prokaryotes. 3rd Edition. Volume 5. New York, Springer, 3–37.
Kielak A. M., van Veen J. A., Kowalchuk G. A. (2010): Comparative Analysis of Acidobacterial Genomic Fragments from Terrestrial and Aquatic Metagenomic Libraries, with Emphasis on Acidobacteria Subdivision 6. Applied and Environmental Microbiology, 76, 6769-6777  https://doi.org/10.1128/AEM.00343-10
Murugesan S., Ulloa-Martínez M., Martínez-Rojano H., Galván-Rodríguez F. M., Miranda-Brito C., Romano M. C., Piña-Escobedo A., Pizano-Zárate M. L., Hoyo-Vadillo C., García-Mena J. (2015): Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. European Journal of Clinical Microbiology & Infectious Diseases, 34, 1337-1346  https://doi.org/10.1007/s10096-015-2355-4
Parks Donovan H., Tyson Gene W., Hugenholtz Philip, Beiko Robert G. (2014): STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 30, 3123-3124  https://doi.org/10.1093/bioinformatics/btu494
Rincon-Florez Vivian, Carvalhais Lilia, Schenk Peer (2013): Culture-Independent Molecular Tools for Soil and Rhizosphere Microbiology. Diversity, 5, 581-612  https://doi.org/10.3390/d5030581
Roesch Luiz F W, Fulthorpe Roberta R, Riva Alberto, Casella George, Hadwin Alison K M, Kent Angela D, Daroub Samira H, Camargo Flavio A O, Farmerie William G, Triplett Eric W (2007): Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, , -  https://doi.org/10.1038/ismej.2007.53
Schmalenberger Achim, Tebbe Christoph C. (2002): Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiology Ecology, 40, 29-37  https://doi.org/10.1111/j.1574-6941.2002.tb00933.x
Suela Silva Monique, Naves Sales Alenir, Teixeira Magalhães-Guedes Karina, Ribeiro Dias Disney, Schwan Rosane Freitas (2013): Brazilian Cerrado Soil Actinobacteria Ecology. BioMed Research International, 2013, 1-10  https://doi.org/10.1155/2013/503805
Teixeira Lia C R S, Peixoto Raquel S, Cury Juliano C, Sul Woo Jun, Pellizari Vivian H, Tiedje James, Rosado Alexandre S (2010): Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME Journal, 4, 989-1001  https://doi.org/10.1038/ismej.2010.35
Wuyts J. (): The European database on small subunit ribosomal RNA. Nucleic Acids Research, 30, 183-185  https://doi.org/10.1093/nar/30.1.183
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti