Changes in nutrient concentration and oxidative metabolism in pecan leaflets at different doses of zinc

Balandrán-Valladares M.I., Cruz-Alvarez O., Jacobo-Cuellar J.L., Hernández-Rodríguez O.A., Flores-Córdova M.A., Parra-Quezada R.A., Sánchez-Chávez E., Ojeda-Barrios D.L. (2021): Changes in nutrient concentration and oxidative metabolism in pecan leaflets at different doses of zinc. Plant Soil Environ., 67: 33–39.


download PDF

Zinc deficiency limits pecan nut production. The objective of this study was to evaluate changes in nutrient concentration and oxidative metabolism in pecan leaflets in response to the application at different doses of zinc. The foliar concentration of nutrients, leaflet area, total chlorophyll, dry weight (leaflets and root), superoxide dismutase (SOD), hydrogen peroxide, catalase (CAT), guaiacol peroxidase (GP) and antioxidant capacity were evaluated. Statistical analysis indicates that the application of 200 µmol Zn2+ affected the foliar concentration of N-total (24.50 ± 2.51 g/kg), P (10.34 ± 2.53 g/kg), Fe2+ (153.33 ± 6.27 mg/kg) and Zn2+ (42.00 ± 2.84 mg/kg), showing a greater area of the leaflet, total chlorophyll content and dry weight (leaflets and root). Plants treated with 50 µmol Zn2+ showed a higher level of SOD activity (1.38 ± 0.016 units/min/g), GP (5.56 ± 0.229 nmol glutathione/min/g), and the production of hydrogen peroxide, without exceeding the control. On the other hand, Zn treatments caused a significant decrease in CAT activity. Zn is an essential micronutrient for the growth and development of pecan, which promotes the accumulation of other nutrients. Therefore, its absence affects the generation of oxidative stress with the subsequent activation of the antioxidant defense enzyme system.


Balafrej H., Bogusz D., Triqui Z.A., Guedira A., Bendaou N., Smouni A., Fahr M. (2020): Zinc hyperaccumulation in plants: a review. Plants (Basel), 9: E562.
Blasco B., Graham N.S., Broadley M.R. (2015): Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. Journal of Plant Physiology, 176: 16–24.
Bouain N., Krouk G., Lacombe B., Rouached H. (2019): Getting to the root of plant mineral nutrition: combinatorial nutrient stresses reveal emergent properties. Trends in Plant Sciences, 24: 542–552.
Burman U., Saini M., Kumar P. (2013): Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry, 95: 605–612.
Castillo-González J., Ojeda-Barrios D., Hernández-Rodríguez A., Abadia J., Sánchez E., Parra-Quezada R., Valles-Aragón M.C., Sida-Arreola J.P. (2019): Zinc nutritional status of pecan trees influences physiological and nutritional indicators, the metabolism of oxidative stress, and yield and fruit quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47: 531–537.
Feigl G., Lehotai N., Molnár Á., Ördög A., Rodríguez-Ruiz M., Palma J.M., Corpas F.J., Erdei L., Kolbert Z. (2015): Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Annals of Botany, 116: 613–625.
García-López J.I., Niño-Medina G., Olivares-Sáenz E., Lira-Saldivar R.H., Barriga-Castro E.D., Vázquez-Alvarado R., Rodríguez-Salinas P.A., Zavala-García F. (2019): Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in Habanero peppers. Plants (Basel), 8: 254.
Heerema R. (2013): Diagnosing Nutrient Disorders of New Mexico Pecan Trees. New Mexico, New Mexico State University. (accessed 2. 6. 2020)
Heerema R.J., Van Leeuwen D., Thompson M.Y., Sherman J.D., Comeau M.J., Walworth J.L. (2017): Soil-application of zinc-EDTA increases leaf photosynthesis of immature ‘Wichita’ pecan trees. Journal of the American Society for Horticultural Science, 142: 27–35.
Hounnou L., Brorsen B.W., Biermacher J.T., Rohla C.T. (2019): Foliar applied zinc and the performance of pecan trees. Journal of Plant Nutrition, 42: 512–516.
Huang R.M., Shen C., Wang S.S., Wang Z.J. (2019): Zinc content and fruit quality of pecan as affected by application of zinc sulfate. HortScience, 54: 1243–1248.
Kim T., Mills H.A., Wetzstein H.Y. (2002): Studies on the effect of zinc supply on growth and nutrient uptake in pecan. Journal of Plant Nutrition, 25: 1987–2000.
Núñez-Moreno H., Walworth J.L., Pond A.P., Kilby M.W. (2009): Soil zinc fertilization of ‘Wichita’ pecan trees growing under alkaline soil conditions. HortScience, 44: 1736–1740.
Núñez-Moreno J.H., Walworth J., Pond A., Kilby M. (2018): Effect of nitrogen rates on ‘Western’ pecan tree development. Acta Horticulturae, 1217: 103–110.
Ojeda-Barrios D.L., Perea-Portillo E., Hernández-Rodríguez A., Ávila-Quezada G., Abadía J., Lambardini L. (2014): Foliar fertilization with zinc in pecan trees. Hortscience, 49: 562–566.
Ojeda-Barrios D.L., Sánchez-Chávez E., Sida-Arreola J.P., Valdez-Cepeda R., Balandran-Valladares M. (2016): The impact of foliar nickel fertilization on urease activity in pecan trees. Journal of Soil Science and Plant Nutrition, 16: 237–247.
Ojeda-Barrios D.L., Hernández-Rodríguez O.A., Martínez-Téllez J., Núñez-Barrios A., Perea-Portillo E. (2009): Foliar application of zinc chelates on pecan. Revista Chapingo Serie Horticultura, 15: 205–210.
Pond A.P., Walworth J.L., Kilby M.W., Gibson R.D., Call R.E., Nunez H. (2006): Leaf nutrient levels for pecans. HortScience, 41: 1339–1341.
Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reddy R.K., Sreeprasad T.S., Sajanlal P.R., Pradeep T. (2012): Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35: 905–927.
Rivera-Espejel E.A., Cruz-Alvarez O., Mejía-Muñoz J.M., García-Mateos M.R., Colinas-León M.T.B., Martínez-Damián M.T. (2019): Physicochemical quality, antioxidant capacity and nutri­tional value in edible flowers of some wild dahlia species. Folia Horticulturae, 31: 331–342.
Sánchez E., Soto J.M., García P.C., López-Lefebre L.R., Rivero R.M., Ruiz J.M., Romero L. (2000): Phenolic compounds and oxidative metabolism in green bean plants under nitrogen toxicity. Functional Plant Biology, 27: 973–978.
Sokal R.R., Rohlf F.J. (1995): Biometry: The Principles and Practice of Statistics in Biological Research. 3rd Edition. New York, W.H. Freeman and Company, 190–196. ISBN: 0-7167-8604-4
Subba P., Mukhopadhyay M., Mahato S.K., Bhutia K.D., Mondal T.K., Ghosh S.K. (2014): Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiology and Molecular Biology of Plants, 20: 461–473.
Tewari R.K., Kumar P., Sharma P.N. (2008): Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, 171: 286–294.
Walworth J.L., White S.A., Comeau M.J., Heerema R.J. (2017): Soil-applied ZnEDTA: vegetative growth, nut production, and nutrient acquisition of immature pecan trees grown in an alkaline, calcareous soil. HortScience, 52: 301–305.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti