Biochar remediation of soil: linking biochar production with function in heavy metal contaminated soils

https://doi.org/10.17221/544/2020-PSECitation:

Taraqqi-A-Kamal A., Atkinson C.J., Khan A., Zhang K.K., Sun P., Akther S., Zhang Y.R. (2021): Biochar remediation of soil: linking biochar production with function in heavy metal contaminated soils. Plant Soil Environ., 67: 183–201.

 

download PDF

The focus of this study is on the soil physicochemical, biological, and microbiological processes altered by biochar application to heavy metal (HM) contaminated soils. The aim is to highlight agronomical and environmental issues by which the restorative capacity of biochar might be developed. Literature shows biochar can induce soil remediation, however, it is unclear how soil processes are linked mechanistically to biochar production and if these processes can be manipulated to enhance soil remediation. The literature often fails to contribute to an improved understanding of the mechanisms by which biochar alters soil function. It is clear that factors such as biochar feedstock, pyrolysis conditions, application rate, and soil type are determinants in biochar soil functionality. These factors are developed to enhance our insight into production routes and the benefits of biochar in HM soil remediation. Despite a large number of studies of biochar in soils, there is little understanding of long-term effects, this is particularly true with respect to the use and need for reapplication in soil remediation.

 

References:
Abbas Z., Ali S., Rizwan M., Zaheer I.E., Malik A., Riaz M.A., Shahid M.R., Rehman M.Z. ur, Al-Wabel M.I. (2018): A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar. Arabian Journal of Geosciences, 11: 1–23. https://doi.org/10.1007/s12517-018-3790-1
 
Abdelhafez A.A., Li J., Abbas M.H.H. (2014): Feasibility of biochar manu-
 
factured from organic wastes on the stabilization of heavy metals in
 
a metal smelter contaminated soil. Chemosphere, 117: 66–71.
 
Adriano D.C., Wenzel W.W., Vangronsveld J., Bolan N.S. (2004): Role of assisted natural remediation in environmental cleanup. Geoderma, 122: 121–142. https://doi.org/10.1016/j.geoderma.2004.01.003
 
Ahmad M., Rajapaksha A.U., Lim J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S., Ok Y.S. (2014): Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19–23. https://doi.org/10.1016/j.chemosphere.2013.10.071
 
Ali A., Guo D., Zhang Y., Sun X., Jiang S., Guo Z., Huang H., Liang W., Li R., Zhang Z. (2017): Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Scientific Reports, 7: 1–12. https://doi.org/10.1038/s41598-017-03045-9
 
Amonette J.E., Joseph S. (2012): Characteristics of biochar: microchemical properties. In: Lehmann J., Joseph S. (eds): Biochar for Environmental Management: Science and Technology. London, Earthscan, 33–52.
 
Arshad M., Khan A.H.A., Hussain I., Badar-uz-Zaman, Anees M., Iqbal M., Soja G., Linde C., Yousaf S. (2017): The reduction of chromium (VI)
 
phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Applied Soil Ecology, 114: 90–98. https://doi.org/10.1016/j.apsoil.2017.02.021
 
Atkinson C.J. (2017): Using biomass waste in the remediation of degraded land. In: NexGen Technologies for Mining and Fuel Industries Vol II. New Delhi, Vigyan Bhawan, 1–8.
 
Atkinson C.J. (2018): How good is the evidence that soil-applied biochar improves water-holding capacity? Soil Use and Management, 34: 177–186. https://doi.org/10.1111/sum.12413
 
Atkinson C.J., Fitzgerald J.D., Hipps N.A. (2010): Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337: 1–18. https://doi.org/10.1007/s11104-010-0464-5
 
Azarbad H., Niklińska M., Laskowski R., van Straalen N.M., van Gestel C.A.M., Zhou J., He Z., Wen C., Röling W.F.M. (2015): Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiology Ecology, 91: 1–11. https://doi.org/10.1093/femsec/fiu003
 
Bååth E. (1989): Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47: 335–379. https://doi.org/10.1007/BF00279331
 
Baronti S., Alberti G., Vedove G.D., di Gennaro F., Fellet G., Genesio L., Miglietta F., Peressotti A., Vaccari F.P. (2010): The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Italian Journal of Agronomy, 5: 3–11. https://doi.org/10.4081/ija.2010.3
 
Bastami K.D., Afkhami M., Mohammadizadeh M., Ehsanpour M., Chambari S., Aghaei S., Esmaeilzadeh M., Neyestani M.R., Lagzaee F., Baniamam M. (2015): Bioaccumulation and ecological risk assessment of heavy metals in the sediments and mullet Liza klunzingeri in the northern part of the persian gulf. Marine Pollution Bulletin, 94: 329–334. https://doi.org/10.1016/j.marpolbul.2015.01.019
 
Bhadauria T., Saxena K.G. (2009): Role of earthworms in soil fertility maintenance through the production of biogenic structures. Applied and Environmental Soil Science, 2010: 1–7. https://doi.org/10.1155/2010/816073
 
Bian F., Zhong Z., Zhang X., Yang C., Gai X. (2020): Bamboo – an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere, 246: 125750.  https://doi.org/10.1016/j.chemosphere.2019.125750
 
Boening D.W. (2000): Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40: 1335–1351. https://doi.org/10.1016/S0045-6535(99)00283-0
 
Bogusz A., Oleszczuk P., Dobrowolski R. (2017): Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environmental Geochemistry and Health, 41: 1663–1674. https://doi.org/10.1007/s10653-017-0036-1
 
Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkham M.B., Scheckel K. (2014): Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? Journal of Hazardous Materials, 266: 141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018
 
Brady N.C., Weil R.R. (2016): The Nature and Properties of Soils. 15th Edition. Essex, Pearson.
 
Brennan A., Jiménez E.M., Puschenreiter M., Alburquerque J.A., Switzer C. (2014): Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379: 351–360. https://doi.org/10.1007/s11104-014-2074-0
 
Campillo-Cora C., Conde-Cid M., Arias-Estévez M., Fernández-Calviño D., Alonso-Vega F. (2020): Specific adsorption of heavy metals in soils: individual and competitive experiments. Agronomy, 10: 1–21. https://doi.org/10.3390/agronomy10081113
 
Cao X., Harris W. (2010): Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology, 101: 5222–5228. https://doi.org/10.1016/j.biortech.2010.02.052
 
Cao Y., Gao Y., Qi Y., Li J. (2018): Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils. Environmental Science and Pollution Research, 25: 7589–7599. https://doi.org/10.1007/s11356-017-1061-4
 
Castracani C., Maienza A., Grasso D.A., Genesio L., Malcevschi A., Miglietta F., Vaccari F.P., Mori A. (2015): Biochar-macrofauna interplay: searching for new bioindicators. Science of the Total Environment, 536: 449–456. https://doi.org/10.1016/j.scitotenv.2015.07.019
 
Chan K.Y., Xu Z. (2009): Biochar: nutrient properties and their enhancement. In: Lehmann J., Joseph S. (eds): Biochar for Environmental Management: Science and Technology. London, Earthscan, 67–84.
 
Chen L., He L.Y., Wang Q., Sheng X.F. (2016): Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper. Journal of Hazardous Materials, 312: 123–131. https://doi.org/10.1016/j.jhazmat.2016.03.042
 
Chen T., Zhang Y., Wang H., Lu W., Zhou Z., Zhang Y., Ren L. (2014): Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology, 164: 47–54. https://doi.org/10.1016/j.biortech.2014.04.048
 
Chen Y., Liu Y., Li Y., Wu Y., Chen Y., Zeng G., Zhang J., Li H. (2017): Influence of biochar on heavy metals and microbial community during composting of river sediment with agricultural wastes. Bioresource Technology, 243: 347–355. https://doi.org/10.1016/j.biortech.2017.06.100
 
Chen Z.L., Zhang J.Q., Huang L., Yuan Z.H., Li Z.J., Liu M.C. (2019): Removal of Cd and Pb with biochar made from dairy manure at low temperature. Journal of Integrative Agriculture, 18: 201–210. https://doi.org/10.1016/S2095-3119(18)61987-2
 
Cheng C., Han H., Wang Y., Wang R., He L., Sheng X. (2020): Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil. Science of the Total Environment, 740: 139972. https://doi.org/10.1016/j.scitotenv.2020.139972
 
Cheng C.H., Lehmann J., Engelhard M.H. (2008): Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72: 1598–1610. https://doi.org/10.1016/j.gca.2008.01.010
 
Cheng C.H., Lehmann J., Thies J.E., Burton S.D., Engelhard M.H. (2006): Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37: 1477–1488. https://doi.org/10.1016/j.orggeochem.2006.06.022
 
Cheng J., Li Y., Gao W., Chen Y., Pan W., Lee X., Tang Y. (2018a): Effects of biochar on Cd and Pb mobility and microbial community composition in a calcareous soil planted with tobacco. Biology and Fertility of Soils, 54: 373–383. https://doi.org/10.1007/s00374-018-1267-8
 
Cheng Q., Li J., Li H., Song G., Zhang S. (2018b): Preparation of Coated Fertilizer Used for Improving Soil Polluted by Heavy Metal Comprises Preheating Fertilizer, Mixing Ammonium Magnesium Phosphate and Oil, Spraying to Fertilizer, Mixing Biochar with Earthworm Powder, Cooling, and Drying. China.
 
Coomes O.T., Miltner B.C. (2017): Indigenous charcoal and biochar production: potential for soil improvement under shifting cultivation systems. Land Degradation and Development, 28: 811–821. https://doi.org/10.1002/ldr.2500
 
Culliney T.W. (2013): Role of arthropods in maintaining soil fertility. Agriculture (Switzerland), 3: 629–659. https://doi.org/10.3390/agriculture3040629
 
Egene C.E., Van Poucke R., Ok Y.S., Meers E., Tack F.M.G. (2018): Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. Science of the Total Environment, 626: 195–202. https://doi.org/10.1016/j.scitotenv.2018.01.054
 
Fellet G., Marchiol L., Delle Vedove G., Peressotti A. (2011): Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere, 83: 1262–1267. https://doi.org/10.1016/j.chemosphere.2011.03.053
 
Fischer S., Spielau T., Clemens S. (2017): Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance. Scientific Reports, 7: 1–14. https://doi.org/10.1038/s41598-017-03540-z
 
Fryda L., Visser R. (2015): Biochar for soil improvement: evaluation of biochar from gasification and slow pyrolysis. Agriculture, 5: 1076–1115. https://doi.org/10.3390/agriculture5041076
 
Gascó G., Álvarez M.L., Paz-Ferreiro J., Méndez A. (2019): Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere, 231: 562–570. https://doi.org/10.1016/j.chemosphere.2019.05.168
 
Głąb T., Palmowska J., Zaleski T., Gondek K. (2016): Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281: 11–20. https://doi.org/10.1016/j.geoderma.2016.06.028
 
Gomez-Eyles J.L., Beesley L., Moreno-Jimenez E., Ghosh U., Sizmur T. (2013): The potential of biochar amendments to remediate contaminated soils. In: Ladygina N., Rineau F. (eds.): Biochar and Soil Biota. Florida, CRC Press, Taylor & Francis Group, 100–133.
 
Gonzaga M.I.S., Matias M.I. de A.S., Andrade K.R., Jesus A.N. de, Cunha G. da C., Andrade R.S. de, Santos J.C. de J. (2020): Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere, 240: 124828. https://doi.org/10.1016/j.chemosphere.2019.124828
 
Guo M., Song W., Tian J. (2020): Biochar-facilitated soil remediation: mechanisms and efficacy variations. Frontiers in Environmental Science, 8, doi:10.3389/fenvs.2020.521512. https://doi.org/10.3389/fenvs.2020.521512
 
Gwenzi W., Chaukura N., Mukome F.N.D., Machado S., Nyamasoka B. (2015): Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. Journal of Environmental Management, 150: 250–261. https://doi.org/10.1016/j.jenvman.2014.11.027
 
Hardie M., Clothier B., Bound S., Oliver G., Close D. (2014): Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376: 347–361. https://doi.org/10.1007/s11104-013-1980-x
 
Hayat R., Ali S., Amara U., Khalid R., Ahmed I. (2010): Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60: 579–598. https://doi.org/10.1007/s13213-010-0117-1
 
He E., Yang Y., Xu Z., Qiu H., Yang F., Peijnenburg W.J.G.M., Zhang W., Qiu R., Wang S. (2019a): Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Science of the Total Environment, 673: 245–253. https://doi.org/10.1016/j.scitotenv.2019.04.037
 
He L., Zhong H., Liu G., Dai Z., Brookes P.C., Xu J. (2019b): Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environmental Pollution, 252: 846–855. https://doi.org/10.1016/j.envpol.2019.05.151
 
Herath I., Kumarathilaka P., Navaratne A., Rajakaruna N., Vithanage M. (2014): Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15: 126–138. https://doi.org/10.1007/s11368-014-0967-4
 
Huang D., Liu L., Zeng G., Xu P., Huang C., Deng L., Wang R., Wan J. (2017): The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere, 174: 545–553. https://doi.org/10.1016/j.chemosphere.2017.01.130
 
Igalavithana A.D., Lee S.E., Lee Y.H., Tsang D.C.W., Rinklebe J., Kwon E.E., Ok Y.S. (2017): Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174: 593–603. https://doi.org/10.1016/j.chemosphere.2017.01.148
 
Inyang M.I., Gao B., Yao Y., Xue Y., Zimmerman A., Mosa A., Pullammanappallil P., Ok Y.S., Cao X. (2016): A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46: 406–433. https://doi.org/10.1080/10643389.2015.1096880
 
Janus A., Pelfrêne A., Heymans S., Deboffe C., Douay F., Waterlot C. (2015): Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. Journal of Environmental Management, 162: 275–289. https://doi.org/10.1016/j.jenvman.2015.07.056
 
Jun L., Wei H., Mo A.L., Juan N., Xie H.Y., Hu J.S., Zhu Y.H., Peng C.Y. (2020): Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment. Environmental Research, 188: 109886. https://doi.org/10.1016/j.envres.2020.109886
 
Kamran M., Malik Z., Parveen A., Zong Y., Abbasi G.H., Rafiq M.T., Shaaban M., Mustafa A., Bashir S., Rafay M., Mehmood S., Ali M. (2019): Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. Journal of Environmental Management, 250: 109500. https://doi.org/10.1016/j.jenvman.2019.109500
 
Karami N., Clemente R., Moreno-Jiménez E., Lepp N.W., Beesley L. (2011): Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191: 41–48. https://doi.org/10.1016/j.jhazmat.2011.04.025
 
Kim H.S., Kim K.R., Kim H.J., Yoon J.H., Yang J.E., Ok Y.S., Owens G., Kim K.H. (2015): Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environmental Earth Sciences, 74: 1249–1259. https://doi.org/10.1007/s12665-015-4116-1
 
Kończak M., Oleszczuk P. (2018): Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Science of the Total Environment, 625: 8–15. https://doi.org/10.1016/j.scitotenv.2017.12.118
 
Krull E.S. (2012): Characteristics of biochar: organo-chemical properties. In: Lehmann J., Joseph S. (eds.): Biochar for Environmental Management Science and Technology. London, Earthscan, 53–65.
 
Kumar A., Joseph S., Tsechansky L., Schreiter I.J., Schüth C., Taherysoosavi S., Mitchell D.R.G., Graber E.R. (2020): Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica. Chemosphere, 243: 125332. https://doi.org/10.1016/j.chemosphere.2019.125332
 
Kumar Y.K., Gupta N., Kumar A., Reece L.M., Singh N., Rezania S., Ahmad Khan S. (2018): Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecological Engineering, 120: 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039
 
Kumarathilaka P., Vithanage M. (2017): Influence of Gliricidia sepium biochar on attenuate perchlorate-induced heavy metal release in serpentine soil. Journal of Chemistry, 2017: 1–8. https://doi.org/10.1155/2017/6180636
 
Lee J.W., Kidder M., Evans B.R., Paik S., Buchanan A.C., Garten C.T., Brown R.C. (2010): Characterization of biochars produced from cornstovers for soil amendment. Environmental Science and Technology, 44: 7970–7974. https://doi.org/10.1021/es101337x
 
Lehmann J., Joseph S. (2012): Biochar for environmental management: science and technology. In: Biochar for Environmental Management: Science and Technology. Washington, International Biochar Initiative, 416.
 
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. (2011): Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43: 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
 
Li J., Wang S.L., Zheng L., Chen D., Wu Z., Xie Y., Wu W., Niazi N.K., Ok Y.S., Rinklebe J., Wang H. (2019): Sorption of lead in soil amended with coconut fiber biochar: geochemical and spectroscopic investigations. Geoderma, 350: 52–60. https://doi.org/10.1016/j.geoderma.2019.05.008
 
Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizão F.J., Petersen J., Neves E.G. (2006): Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719–1730. https://doi.org/10.2136/sssaj2005.0383
 
Lin L., Li Z., Liu X., Qiu W., Song Z. (2019): Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environmental Pollution, 244: 600–607. https://doi.org/10.1016/j.envpol.2018.10.011
 
Liu W., Wang S., Lin P., Sun H., Hou J., Zuo Q., Huo R. (2016): Response of CaCl2-extractable heavy metals, polychlorinated biphenyls, and microbial communities to biochar amendment in naturally contaminated soils. Journal of Soils and Sediments, 16: 476–485.  https://doi.org/10.1007/s11368-015-1218-z
 
Lu P., Nuhfer N.T., Kelly S., Li Q., Konishi H., Elswick E., Zhu C. (2011): Lead coprecipitation with iron oxyhydroxide nano-particles. Geochimica et Cosmochimica Acta, 75: 4547–4561. https://doi.org/10.1016/j.gca.2011.05.035
 
Ma X. (2015): Method for Repairing Heavy Metal Contaminated Soil, Involves Selecting Heavy Metal Polluted Soil in Mining Area, Planting Castor in Soil and Applying Fertilizer in Soil Followed by Applying Biochar, Mixing, Aging and Placing Earthworms. China.
 
Ma Y., Oliveira R.S., Freitas H., Zhang C. (2016): Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in Plant Science, 7: 1–19.
 
Mandal S., Pu S., Adhikari S., Ma H., Kim D.H., Bai Y., Hou D. (2020): Progress and future prospects in biochar composites: application and reflection in the soil environment. Critical Reviews in Environmental Science and Technology, 51: 219–271. https://doi.org/10.1080/10643389.2020.1713030
 
Méndez A., Tarquis A.M., Saa-Requejo A., Guerrero F., Gascó G. (2013): Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere, 93: 668–676. https://doi.org/10.1016/j.chemosphere.2013.06.004
 
Moreno-Barriga F., Díaz V., Acosta J.A., Muñoz M.Á., Faz Á., Zornoza R. (2017): Organic matter dynamics, soil aggregation and microbial biomass and activity in Technosols created with metalliferous mine residues, biochar and marble waste. Geoderma, 301: 19–29. https://doi.org/10.1016/j.geoderma.2017.04.017
 
Morillo E., Villaverde J. (2017): Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment, 586: 576–597. https://doi.org/10.1016/j.scitotenv.2017.02.020
 
Netherway P., Reichman S.M., Laidlaw M., Scheckel K., Pingitore N., Gascó G., Méndez A., Surapaneni A., Paz-Ferreiro J. (2019): Phosphorus-rich biochars can transform lead in an urban contaminated soil. Journal of Environmental Quality, 48: 1091–1099. https://doi.org/10.2134/jeq2018.09.0324
 
Nigam N., Khare P., Yadav V., Mishra D., Jain S., Karak T., Panja S., Tandon S. (2019): Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. Ecotoxicology and Environmental Safety, 172: 411–422. https://doi.org/10.1016/j.ecoenv.2019.02.006
 
O’Connor D., Peng T., Li G., Wang S., Duan L., Mulder J., Cornelissen G., Cheng Z., Yang S., Hou D. (2018a): Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil. Science of the Total Environment, 621: 819–826. https://doi.org/10.1016/j.scitotenv.2017.11.213
 
O’Connor D., Peng T., Zhang J., Tsang D.C.W., Alessi D.S., Shen Z., Bolan N.S., Hou D. (2018b): Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Science of the Total Environment, 619–620: 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132
 
Pan X., Gu Z., Chen W., Li Q. (2021): Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: a review. Science of the Total Environment, 754: 142104. https://doi.org/10.1016/j.scitotenv.2020.142104
 
Park J.H., Choppala G.K., Bolan N.S., Chung J.W., Chuasavathi T. (2011): Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348: 439–451. https://doi.org/10.1007/s11104-011-0948-y
 
Park J.H., Lee S.J., Lee M.E., Chung J.W. (2016): Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar. Environmental Science: Processes and Impacts, 18: 514–520. https://doi.org/10.1039/C6EM00098C
 
Peng J.S., Ding G., Meng S., Yi H.Y., Gong J.M. (2017): Enhanced metal tolerance correlates with heterotypic variation in SpMTL,
 
a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola. Plant, Cell and Environment, 40: 1368–1378.
 
Penido E.S., Martins G.C., Mendes T.B.M., Melo L.C.A., do Rosário Guimarães I., Guilherme L.R.G. (2019): Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172: 326–333. https://doi.org/10.1016/j.ecoenv.2019.01.110
 
Porter S.K., Scheckel K.G., Impellitteri C.A., Ryan J.A. (2004): Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Critical Reviews in Environmental Science and Technology, 34: 495–604. https://doi.org/10.1080/10643380490492412
 
Prendergast-Miller M.T., Duvall M., Sohi S.P. (2014): Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, 65: 173–185. https://doi.org/10.1111/ejss.12079
 
Pukalchik M., Mercl F., Terekhova V., Tlustoš P. (2018): Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: evidence from an integrative approach. Chemosphere, 203: 228–238. https://doi.org/10.1016/j.chemosphere.2018.03.181
 
Rajapaksha A.U., Chen S.S., Tsang D.C.W., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N.S., Ok Y.S. (2016): Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148: 276–291. https://doi.org/10.1016/j.chemosphere.2016.01.043
 
Rees F., Simonnot M.O., Morel J.L. (2014): Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65: 149–161. https://doi.org/10.1111/ejss.12107
 
Rinklebe J., Shaheen S.M., Frohne T. (2016): Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere, 142: 41–47. https://doi.org/10.1016/j.chemosphere.2015.03.067
 
Rizvi A., Khan M.S. (2017): Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 185: 942–952. https://doi.org/10.1016/j.chemosphere.2017.07.088
 
Rizwan M., Ali S., Qayyum M.F., Ibrahim M., Zia-ur-Rehman M., Abbas T., Ok Y.S. (2016): Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23: 2230–2248. https://doi.org/10.1007/s11356-015-5697-7
 
Rodriguez-Campos J., Dendooven L., Alvarez-Bernal D., Contreras-Ramos S.M. (2014): Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Applied Soil Ecology, 79: 10–25. https://doi.org/10.1016/j.apsoil.2014.02.010
 
Sakhiya A.K., Anand A., Kaushal P. (2020): Production, Activation, and Applications of Biochar in Recent Times. Singapore, Springer. https://doi.org/10.1007/s42773-020-00047-1
 
Sanchez-Hernandez J.C. (2018): Biochar activation with exoenzymes induced by earthworms: a novel functional strategy for soil quality promotion. Journal of Hazardous Materials, 350: 136–143. https://doi.org/10.1016/j.jhazmat.2018.02.019
 
Sanchez-Hernandez J.C., Cares X.A., Pérez M.A., del Pino J.N. (2019): Biochar increases pesticide-detoxifying carboxylesterases along earthworm burrows. Science of the Total Environment, 667: 761–768. https://doi.org/10.1016/j.scitotenv.2019.02.402
 
Saxena G., Purchase D., Mulla S.I., Saratale G.D., Bharagava R.N. (2020): Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Reviews of Environmental Contamination and Toxicology, 249: 71–131.
 
Seneviratne M., Weerasundara L., Ok Y.S., Rinklebe J.J., Vithanage M. (2017): Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. Journal of Environmental Management, 186: 293–300. https://doi.org/10.1016/j.jenvman.2016.07.024
 
Shen Z., Som A.M., Wang F., Jin F., McMillan O., Al-Tabbaa A. (2016): Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Science of the Total Environment, 542: 771–776.  https://doi.org/10.1016/j.scitotenv.2015.10.057
 
Shen Z., Zhang Y., Jin F., McMillan O., Al-Tabbaa A. (2017): Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Science of the Total Environment, 609: 1401–1410. https://doi.org/10.1016/j.scitotenv.2017.08.008
 
Silvani L., Hjartardottir S., Bielská L., Škulcová L., Cornelissen G., Nizzetto L., Hale S.E. (2019): Can polyethylene passive samplers predict polychlorinated biphenyls (PCBs) uptake by earthworms and turnips in a biochar amended soil? Science of the Total Environment, 662: 873–880. https://doi.org/10.1016/j.scitotenv.2019.01.202
 
Singh J., Kalamdhad A.S. (2011): Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research in Chemistry and Environment, 1: 15–21.
 
Song Y., Li Y., Zhang W., Wang F., Bian Y., Boughner L.A., Jiang X. (2016): Novel biochar-plant tandem approach for remediating hexachlorobenzene contaminated soils: proof-of-concept and new insight into the rhizosphere. Journal of Agricultural and Food Chemistry, 64: 5464–5471. https://doi.org/10.1021/acs.jafc.6b01035
 
Soudek P., Rodriguez Valseca I.M., Petrová Š., Song J., Vaněk T. (2017): Characteristics of different types of biochar and effects on the toxicity of heavy metals to germinating sorghum seeds. Journal of Geochemical Exploration, 182: 157–165. https://doi.org/10.1016/j.gexplo.2016.12.013
 
Steiner C., Teixeira W.G., Lehmann J., Nehls T., De MacÊdo J.L.V., Blum W.E.H., Zech W. (2007): Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291: 275–290. https://doi.org/10.1007/s11104-007-9193-9
 
Sui F., Zuo J., Chen D., Li L., Pan G., Crowley D.E. (2018): Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environmental Science and Pollution Research, 25: 3368–3377. https://doi.org/10.1007/s11356-017-0652-4
 
Sun F., Lu S. (2014): Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177: 26–33. https://doi.org/10.1002/jpln.201200639
 
Tan G., Sun W., Xu Y., Wang H., Xu N. (2016a): Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 211: 727–735. https://doi.org/10.1016/j.biortech.2016.03.147
 
Tan X.F., Liu Y.G., Gu Y.L., Xu Y., Zeng G.M., Hu X.J., Liu S.M., Wang X., Liu S.M., Li J. (2016b): Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresource Technology, 212: 318–333. https://doi.org/10.1016/j.biortech.2016.04.093
 
Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., Yang Z. (2015): Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125: 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058
 
Trompowsky P.M., De Melo Benites V., Madari B.E., Pimenta A.S., Hockaday W.C., Hatcher P.G. (2005): Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Organic Geochemistry, 36: 1480–1489. https://doi.org/10.1016/j.orggeochem.2005.08.001
 
Tu C., Wei J., Guan F., Liu Y., Sun Y., Luo Y. (2020): Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environment International, 137: 105576. https://doi.org/10.1016/j.envint.2020.105576
 
Uchimiya M., Lima I.M., Thomas Klasson K., Chang S., Wartelle L.H., Rodgers J.E. (2010): Immobilization of heavy metal ions (Cu II, Cd II, Ni II, and Pb II) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58: 5538–5544. https://doi.org/10.1021/jf9044217
 
Uchimiya M., Wartelle L.H., Klasson K.T., Fortier C.A., Lima I.M. (2011): Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59: 2501–2510. https://doi.org/10.1021/jf104206c
 
Wang J., Shi L., Zhai L., Zhang H., Wang S., Zou J., Shen Z., Lian C., Chen Y. (2021): Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: a review. Ecotoxicology and Environmental Safety, 207: 111261. https://doi.org/10.1016/j.ecoenv.2020.111261
 
Wang M., Zhu Y., Cheng L., Andserson B., Zhao X., Wang D., Ding A. (2018a): Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences (China), 63: 156–173. https://doi.org/10.1016/j.jes.2017.08.004
 
Wang S., Xu Y., Norbu N., Wang Z. (2018b): Remediation of biochar on heavy metal polluted soils. IOP Conference Series: Earth and Environmental Science, 108, doi:10.1088/1755-1315/108/4/042113. https://doi.org/10.1088/1755-1315/108/4/042113
 
Wang X.H., Luo W.W., Wang Q., He L.Y., Sheng X.F. (2018c): Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil. Environmental Pollution, 241: 529–539. https://doi.org/10.1016/j.envpol.2018.05.088
 
Wang Y., Gu K., Wang H., Shi B. (2019): Remediation of heavy-metal-contaminated soils by biochar: a review. Environmental Geotechnics, 180091. https://doi.org/10.1680/jenge.18.00091
 
Wang Y., Liu Y., Zhan W., Zheng K., Wang J., Zhang C., Chen R. (2020): Stabilization of heavy metal-contaminated soils by biochar: challenges and recommendations. Science of the Total Environment, 729: 139060. https://doi.org/10.1016/j.scitotenv.2020.139060
 
Wenzel W.W. (2009): Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321: 385–408. https://doi.org/10.1007/s11104-008-9686-1
 
Xiong Z., Shihong Z., Haiping Y., Tao S., Yingquan C., Hanping C. (2013): Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Research, 6: 1147–1153. https://doi.org/10.1007/s12155-013-9304-9
 
Xu P., Sun C.X., Ye X.Z., Xiao W.D., Zhang Q., Wang Q. (2016): The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety, 132: 94–100. https://doi.org/10.1016/j.ecoenv.2016.05.031
 
Xu Y., Seshadri B., Sarkar B., Wang H., Rumpel C., Sparks D., Farrell M., Hall T., Yang X., Bolan N. (2018): Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 621: 148–159. https://doi.org/10.1016/j.scitotenv.2017.11.214
 
Yang J., Chen Z., Wu S., Cui Y., Zhang L., Dong H., Yang C., Li C. (2015): Overexpression of the Tamarix hispida ThMT3 gene increases copper tolerance and adventitious root induction in Salix matsudana Koidz. Plant Cell, Tissue and Organ Culture, 121: 469–479.  https://doi.org/10.1007/s11240-015-0717-3
 
Yang X., Liu J., McGrouther K., Huang H., Lu K., Guo X., He L., Lin X., Che L., Ye Z., Wang H. (2016): Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23: 974–984. https://doi.org/10.1007/s11356-015-4233-0
 
Yu H., Zou W., Chen J., Chen H., Yu Z., Huang J., Tang H., Wei X., Gao B. (2019): Biochar amendment improves crop production in problem soils: a review. Journal of Environmental Management, 232: 8–21.
 
Yuan H., Lu T., Zhao D., Huang H., Noriyuki K., Chen Y. (2013): Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. Journal of Material Cycles and Waste Management, 15: 357–361. https://doi.org/10.1007/s10163-013-0126-9
 
Zhang D., Lu L., Lü T., Jin M., Lin J., Liu X., Zhao H. (2018a): Application of a rice husk-derived biochar in soil immobilization of iodide (I−) and iodate (IO3−). Journal of Soils and Sediments, 18: 1540–1547. https://doi.org/10.1007/s11368-017-1864-4
 
Zhang G., Guo X., Zhu Y., Liu X., Han Z., Sun K., Ji L., He Q., Han L. (2018b): The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil. Geoderma, 328: 100–108.  https://doi.org/10.1016/j.geoderma.2018.05.009
 
Zhang H., Yuan X., Xiong T., Wang H., Jiang L. (2020a): Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398: 125657. https://doi.org/10.1016/j.cej.2020.125657
 
Zhang K., Sun P., Faye M.C.A.S., Zhang Y. (2018c): Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon, 130: 730–740. https://doi.org/10.1016/j.carbon.2018.01.036
 
Zhang M., Wang J., Bai S.H., Zhang Y., Teng Y., Xu Z. (2019): Assisted phytoremediation of a co-contaminated soil with biochar amendment: contaminant removals and bacterial community properties. Geoderma, 348: 115–123. https://doi.org/10.1016/j.geoderma.2019.04.031
 
Zhang R.H., Li Z.G., Liu X.D., Wang B.C., Zhou G.L., Huang X.X., Lin C.F., Wang A.H., Brooks M. (2017): Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecological Engineering, 98: 183–188. https://doi.org/10.1016/j.ecoleng.2016.10.057
 
Zhang Y., Chen Z., Xu W., Liao Q., Zhang H., Hao S., Chen S. (2020b): Pyrolysis of various phytoremediation residues for biochars: chemical forms and environmental risk of Cd in biochar. Bioresource Technology, 299: 122581. https://doi.org/10.1016/j.biortech.2019.122581
 
Zhao L., Cao X., Zheng W., Scott J.W., Sharma B.K., Chen X. (2016): Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry and Engineering, 4: 1630–1636. https://doi.org/10.1021/acssuschemeng.5b01570
 
Zhou D., Liu D., Gao F., Li M., Luo X. (2017): Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils. International Journal of Environmental Research and Public Health, 14: 1–15. https://doi.org/10.3390/ijerph14070681
 
Zhu Q., Wu J., Wang L., Yang G., Zhang X. (2015): Effect of biochar on heavy metal speciation of paddy soil. Water, Air, and Soil Pollution, 226: 1–10. https://doi.org/10.1007/s11270-015-2680-3
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti