Different impacts of an electron shuttle on nitrate- and nitrite-dependent anaerobic oxidation of methane in paddy soil


Zhang Y.H., Wang F.Y. (2021): Different impacts of an electron shuttle on nitrate- and nitrite-dependent anaerobic oxidation of methane in paddy soil. Plant Soil Environ., 67: 264–269.


download PDF

Quinones, redox-active functional groups in soil organic matter, can act as electron shuttles for microbial anaerobic transformation. Here, we used 13CH4 to trace 13C conversion (13C-CO2 + 13C-SOC) to investigate the influence of an artificial electron shuttle (anthraquinone-2,6-disulfonate, AQDS) on denitrifying anaerobic methane oxidation (DAMO) in paddy soil. The results showed that AQDS could act as the terminal electron acceptor for the anaerobic oxidation of methane (AOM) in the paddy field. Moreover, AQDS significantly enhanced nitrate-dependent AOM rates and the amount of 13C-CH4 assimilation to soil organic carbon (SOC), whereas it was remarkably reduced nitrite-dependent AOM rates and 13C assimilation. Ultimately, AQDS notably increased the total DAMO rates and 13C assimilation to SOC. However, the electron shuttle did not change the percentage of 13C-SOC in total 13C-CH4 conversion. These results suggest that electron shuttles in the natural organic matter might be able to offset methane emission by facilitating AOM coupled with the denitrification process.

Aranda-Tamaura C., Estrada-Alvarado M.I., Texier A.-C., Cuervo F., Gómez J., Cervantes F.J. (2007): Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification. Chemosphere, 69: 1722–1727. https://doi.org/10.1016/j.chemosphere.2007.06.004
Bai Y.N., Wang X.N., Wu J., Lu Y.Z., Fu L., Zhang F., Lau T.C., Zeng R.J. (2019): Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Research, 164: 114935. https://doi.org/10.1016/j.watres.2019.114935
Cervantes F.J., van der Velde S., Lettinga G., Field J.A. (2000): Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation, 11: 313–321. https://doi.org/10.1023/A:1011118826386
Ding J., Fu L., Ding Z.W., Lu Y.Z., Cheng S.H., Zeng R.J. (2016): Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field. Applied Microbiology and Biotechnology, 100: 439–446. https://doi.org/10.1007/s00253-015-6986-2
Ettwig K.F., Butler M.K., Le Paslier D., Pelletier E., Mangenot S., Kuypers M.M., Schreiber F., Dutilh B.E., Zedelius J., de Beer D., Gloerich J., Wessels H.J., van Alen T., Luesken F., Wu M.L., van de Pas-Schoonen K.T., Opden Camp H.J., Janssen-Megens E.M., Francoijs K.J., Stunnenberg H., Weissenbach J., Jetten M.S., Strous M. (2010): Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464: 543–548. https://doi.org/10.1038/nature08883
Fan L.C., Dippold M.A., Ge T.D., Wu J.S., Thiel V., Kuzyakov Y., Dorodnikov M. (2020): Anaerobic oxidation of methane in paddy soil: role of electron acceptors and fertilization in mitigating CH4 fluxes. Soil Biology and Biochemistry, 141: 107685. https://doi.org/10.1016/j.soilbio.2019.107685
Gupta V., Smemo K.A., Yavitt J.B., Fowle D., Branfireun B., Basiliko N. (2013): Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environmental Science and Technology, 47: 8273–8279. https://doi.org/10.1021/es400484t
Haroon M.F., Hu S.H., Shi Y., Imelfort M., Keller J., Hugenholtz P., Yuan Z.G., Tyson G.W. (2013): Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500: 567–570. https://doi.org/10.1038/nature12375
He Q.X., Yu L.P., Li J.B., He D., Cai X.X., Zhou S.G. (2019): Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction. Science of The Total Environment, 688: 664–672. https://doi.org/10.1016/j.scitotenv.2019.06.299
He Z.F., Wang J.Q., Zhang X., Cai C.Y., Geng S., Zheng P., Xu X.H., Hu B.L. (2015): Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs. Applied Microbiology and Biotechnology, 99: 10853–10860. https://doi.org/10.1007/s00253-015-6939-9
Knittel K., Boetius A. (2009): Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63: 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130
McGlynn S.E., Chadwick G.L., Kempes C.P., Orphan V.J. (2015): Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526: 531–535. https://doi.org/10.1038/nature15512
Mujiyo M., Sunarminto B.H., Hanudin E., Widada J., Syamsiyah J. (2017): Methane production potential of soil profile in organic paddy field. Soil and Water Research, 12: 212–219. https://doi.org/10.17221/58/2016-SWR
Scheller S., Yu H., Chadwick G.L., McGlynn S.E., Orphan V.J. (2016): Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 351: 703–707. https://doi.org/10.1126/science.aad7154
Shen L.D., Huang Q., He Z.F., Lian X., Liu S.A., He Y.F., Lou L.P., Xu X.Y., Zheng P., Hu B.I. (2015): Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Applied Microbiology and Biotechnology, 991: 349–357. https://doi.org/10.1007/s00253-014-6031-x
Smemo K.A., Yavitt J.B. (2011): Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences, 8: 779–793. https://doi.org/10.5194/bg-8-779-2011
Vaksmaa A., Guerrero-Cruz S., van Alen T.A., Cremers G., Ettwig K.F., Lüke C., Jetten M.S.M. (2017): Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’ archaea from an Italian paddy field soil. Applied Microbiology and Biotechnology, 101: 7075–7084. https://doi.org/10.1007/s00253-017-8416-0
Valenzuela E.I., Padilla-Loma C., Gómez-Hernández N., López-Lozano N.E., Casas-Flores S., Cervantes F.J. (2020): Humic substances mediate anaerobic methane oxidation linked to nitrous oxide reduction in wetland sediments. Frontiers in Microbiology, 11: 587. https://doi.org/10.3389/fmicb.2020.00587
Valenzuela E.I., Prieto-Davó A., López-Lozano N.E., Hernández-Eligio A., Vega-Alvarado L., Juárez K., García-González A.S., López M.G., Cervantes F.J. (2017): Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Applied and Environmental Microbiology, 83: AEM.00645-17. https://doi.org/10.1128/AEM.00645-17
Wang J.Q., Cai C.Y., Li Y.F., Hua M.L., Wang J.R., Yang H.R., Zheng P., Hu B.L. (2019): Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone. Environmental Science and Technology, 53: 203–212. https://doi.org/10.1021/acs.est.8b05742
Wu Y.D., Liu T.X., Li X.M., Li F.B. (2014): Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics. Environmental Science and Technology, 48: 9306–9314. https://doi.org/10.1021/es5017312
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti