Effects of atrazine application on soil aggregates, soil organic carbon and glomalin-related soil protein
Albuquerque F.P., De Oliveira J.L., Moschini-Carlos V., Fraceto L.F. (2020): An overview of the potential impacts of atrazine in aquatic environments: perspectives for tailored solutions based on nanotechnology. Science of The Total Environment, 700: 134868.
https://doi.org/10.1016/j.scitotenv.2019.134868
Bedini S., Avio L., Argese E., Giovannetti M. (2007): Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agriculture, Ecosystems and Environment, 120: 463–466.
https://doi.org/10.1016/j.agee.2006.09.010
Bronick C.J., Lal R. (2005): Soil structure and management: a review. Geoderma, 124: 3–22.
https://doi.org/10.1016/j.geoderma.2004.03.005
Chen Q.L., Wang H., Yang B.S., He F. (2014a): The combined effects of atrazine and lead (Pb): relative microbial activities and herbicide dissipation. Ecotoxicology and Environmental Safety, 102: 93–99.
https://doi.org/10.1016/j.ecoenv.2014.01.011
Chen Q.L., Yang B.S., Wang H., He F., Gao Y.C., Scheel R.A. (2014b): Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination. Environmental Science and Pollution Research, 22: 996–1007.
https://doi.org/10.1007/s11356-014-3369-7
Chen Z., He X.L., Guo H.J., Yao X.Q., Chen C. (2012): Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming-pastoral zone, north China. Symbiosis, 57: 149–160.
https://doi.org/10.1007/s13199-012-0186-y
Crouzet O., Consentino L., Pétraud J.-P., Marrauld C., Aguer J.-P., Bureau S., Bourvellec C.L., Touloumet L., Bérard A. (2019): Soil photosynthetic microbial communities mediate aggregate stability: influence of cropping systems and herbicide use in an agricultural soil. Frontiers in Microbiology, 103389.
https://doi.org/10.3389/fmicb.2019.01319
Driver J.D., Holben W.E., Rillig M.C. (2005): Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37: 101–106.
https://doi.org/10.1016/j.soilbio.2004.06.011
Druille M., Cabello M.N., García Parisi P.A., Golluscio R.A., Omacini M. (2015): Glyphosate vulnerability explains changes in root-symbionts propagules viability in pampean grasslands. Agriculture, Ecosystems and Environment, 202: 48–55.
https://doi.org/10.1016/j.agee.2014.12.017
Fan X.X., Song F.Q. (2014): Bioremediation of atrazine: recent advances and promises. Journal of Soils and Sediments, 14: 1727–1737.
https://doi.org/10.1007/s11368-014-0921-5
Fan X.X., Chang W., Sui X., Liu Y.F., Song G., Song F.Q., Feng F.J. (2020): Changes in rhizobacterial community mediating atrazine dissipation by arbuscular mycorrhiza. Chemosphere, 256: 127046.
https://doi.org/10.1016/j.chemosphere.2020.127046
Fang H., Lian J.J., Wang H.F., Cai L., Yu Y.L. (2015): Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. Journal of Hazardous Materials, 286: 457–465.
https://doi.org/10.1016/j.jhazmat.2015.01.006
Gao J.P., Song P.P., Wang G.Y., Wang J.H., Zhu L.S., Wang J. (2018): Responses of atrazine degradation and native bacterial community in soil to Arthrobacter sp. strain HB-5. Ecotoxicology and Environmental Safety, 159: 317–323.
https://doi.org/10.1016/j.ecoenv.2018.05.017
Guo Z.C., Zhang Z.B., Zhou H., Rahman M.T., Wang D.Z., Guo X.S., Li L.J., Peng X.H. (2018): Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil and Tillage Research, 180: 232–237.
https://doi.org/10.1016/j.still.2018.03.007
Hogan A.J., Valverde-Barrantes O.J., Ding Q., Xu H., Baraloto C. (2019): Intraspecific root and leaf trait variation with tropical forest successional status: consequences for community-weighted patterns. BioRxiv, 611640.
Ji L.L., Tan W.F., Chen X.H. (2019): Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil and Tillage Research, 185: 1–8.
https://doi.org/10.1016/j.still.2018.08.010
Kemper W.D., Rosenau R.C. (1986): Aggregate stability and size distribution. In: Klute A. (ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd Edition. Madison, ASA and SSSA, 425–442. ISBN: 9780891180883
Knapen A., Poesen J., Galindo-Morales P., De Baets S., Pals A. (2007): Effects of microbiotic crusts under cropland in temperate environments on soil erodibility during concentrated flow. Earth Surface Processes and Landforms, 32: 1884–1901.
https://doi.org/10.1002/esp.1504
Liu X.H., Han F.P., Zhang X.C. (2012): Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments. International Journal of Agriculture and Biology, 14: 975–979.
Liu Y.F., Fan X.X., Zhang T., He W.Y., Song F.Q. (2020): Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China. Environmental Pollution, 262: 114264.
https://doi.org/10.1016/j.envpol.2020.114264
Pérez-Iglesias J.M., Franco-Belussi L., Natale G.S., de Oliveira C. (2019): Biomarkers at different levels of organisation after atrazine formulation (SIPTRAN 500SC®) exposure in Rhinella schineideri (Anura: Bufonidae) Neotropical tadpoles. Environmental Pollution, 244: 733–746.
https://doi.org/10.1016/j.envpol.2018.10.073
Radivojević L., Šantrić L., Stanković-Kalezić R. (2006): Effects of atrazine on soil microorganisms. Pesticidi i Fitomedicina, 21: 215–221.
Ramos-Zappata J.A., Marrufo-Zappata D., Guadarrama P., Carillo-Sánchez L., Henrández-Cuevas L., Caamal-Maldonado A. (2012): Impact of weed control on arbuscular mycorrhizal fungi in a tropical agroecosystem: a long-term experiment. Mycorrhiza, 22: 653–661.
https://doi.org/10.1007/s00572-012-0443-1
Rillig M.C., Maestre F.T., Lamit L.J. (2003): Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biology and Biochemistry, 35: 1257–1260.
https://doi.org/10.1016/S0038-0717(03)00185-8
Shi P., Castaldi F., Van Wesemael B., Van Oost K. (2020): Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt. Geoderma, 357: 113958.
https://doi.org/10.1016/j.geoderma.2019.113958
Singh A.K., Rai A., Singh N. (2016): Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma, 277: 41–50.
https://doi.org/10.1016/j.geoderma.2016.05.004
Tu C.M. (2008): Effect of some herbicides on activities of microorganisms and enzymes in soil. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 27: 695–709.
Wang P., Liu Y.L., Li L.Q., Cheng K., Zheng J.F., Zhang X.H., Zheng J.W., Joseph S., Pan G.X. (2015): Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Scientific Reports, 5: 15704.
https://doi.org/10.1038/srep15704
Wright S.F., Upadhyaya A., Buyer J.S. (1998): Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry, 30: 1853–1857.
https://doi.org/10.1016/S0038-0717(98)00047-9
Yang Y.R., He C.J., Huang L., Ban Y.H., Tang M. (2017): The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. Plos One, 12: e0182264.
https://doi.org/10.1371/journal.pone.0182264
Zhang X.K., Wu X., Zhang S.X., Xing Y.H., Wang R., Liang W.J. (2014): Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena, 123: 188–194.
https://doi.org/10.1016/j.catena.2014.08.011
Zhang C., Li H.X., Qin L., Ge J., Qi Z., Talukder M., Li Y.H., Li J.L. (2019): Nuclear receptor AHR-mediated xenobiotic detoxification pathway involves in atrazineinduced nephrotoxicity in quail (Coturnix C. coturnix). Environmental Pollution, 253: 889–898.
https://doi.org/10.1016/j.envpol.2019.07.058
Zhao H.L., Shar A.G., Li S., Chen Y.L., Shi J.L., Zhang X.Y., Tian X.H. (2018): Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil and Tillage Research, 175: 178–186.
https://doi.org/10.1016/j.still.2017.09.012
Zhu C.Y., Yang W.L., He H.J., Yang C.P., Yu J.P., Wu X., Zeng G.M., Tarre S., Green M. (2018): Preparation, performances and mechanisms of magnetic Saccharomyces cerevisiae bionanocomposites for atrazine removal. Chemosphere, 200: 380–387.
https://doi.org/10.1016/j.chemosphere.2018.02.020
Zhu R.H., Zheng Z.C., Li T.X., He S.Q., Zhang X.Z., Wang Y.D., Liu T. (2019): Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. Environmental Science and Pollution Research, 26: 1973–1982.
https://doi.org/10.1007/s11356-018-3782-4