A bitter cup: the estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regions

https://doi.org/10.17221/602/2015-PSECitation:Martins L.D., Eugenio F.C., Rodrigues W.N., Brinate S.V.B., Colodetti T.V., Amaral J.F.T., Jesus J.W.C., Ramalho J.C., Santos A.R.d., Tomaz M.A. (2015): A bitter cup: the estimation of spatial distribution of carbon balance in Coffea spp. plantations reveals increased carbon footprint in tropical regions. Plant Soil Environ., 61: 544-552.
download PDF

There is an increasing need to mitigate and adapt the agriculture to climate changes with strategies that synergistically allow minimizing the climate impact over the coffee production and contributing to a decrease of coffee cultivation vulnerability to global warming. In this context, the objective of this study was to analyse the carbon balance in systems of coffee production, which can contribute to information to mitigate climate change, by addressing the cultivation and production of Coffea spp. in the tropical regions, such as the Espírito Santo state of the case study (between the meridians 39°38' and 41°50' of western longitude and the parallels 17°52' and 21°19' of southern latitude). For this purpose, data of coffee plantations area (ha), carbon storage, carbon footprint and carbon balance (all in t CO2-equivalent) were recorded for different tropical regions, from 2001–2012. The estimated parameters indicate that 2 239 476 t CO2-eq were sequestrated (positive balance) and 10 320 223 t CO2-eq (negative balance) were emitted. The spatialisation allows estimating that the footprint is reduced in 92% after quantifying the carbon stock in coffee plantations. The carbon balance was negative, with magnitude of 4 815 820 t CO2-eq, which indicates that the carbon balance in coffee plantations in tropical regions is not enough to compensate the carbon footprint.

References:
Bunn Christian, Läderach Peter, Ovalle Rivera Oriana, Kirschke Dieter (2015): A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129, 89-101  https://doi.org/10.1007/s10584-014-1306-x
 
Craparo A.C.W., Van Asten P.J.A., Läderach P., Jassogne L.T.P., Grab S.W. (2015): Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207, 1-10  https://doi.org/10.1016/j.agrformet.2015.03.005
 
Cruz C.D. (2013): GENES – A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum, 35: 271–276.
 
Dossa E. L., Fernandes E. C. M., Reid W. S., Ezui K. (2008): Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agroforestry Systems, 72, 103-115  https://doi.org/10.1007/s10457-007-9075-4
 
Eugenio F.C., de Peluzio T.M.O., Pereira A.A.B., dos Santos A.R., Peluzio J.B.E., Bragança R., Fiedler N.C., Paula E.N. da S.O. de (2014): Zoning agroclimatological Coffea canephora for Espírito Santo by spatial interpolation. Coffee Science, 9: 319–328. (In Portuguese)
 
FAO (Food and Agriculture Organization of the United Nations). Statistics division, Emissions of the Brazil. Available at http://faostat3.fao.org/browse/area/21/S (access May 2015)
 
Ghini Raquel, Torre-Neto André, Dentzien Anamaria F. M., Guerreiro-Filho Oliveiro, Iost Regiane, Patrício Flávia R. A., Prado Jeanne S. M., Thomaziello Roberto A., Bettiol Wagner, DaMatta Fábio M. (2015): Coffee growth, pest and yield responses to free-air CO2 enrichment. Climatic Change, 132, 307-320  https://doi.org/10.1007/s10584-015-1422-2
 
Hergoualc’h Kristell, Blanchart Eric, Skiba Ute, Hénault Catherine, Harmand Jean-Michel (2012): Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems & Environment, 148, 102-110  https://doi.org/10.1016/j.agee.2011.11.018
 
Hillier Jonathan, Walter Christof, Malin Daniella, Garcia-Suarez Tirma, Mila-i-Canals Llorenç, Smith Pete (2011): A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling & Software, 26, 1070-1078  https://doi.org/10.1016/j.envsoft.2011.03.014
 
Humbert Sebastien, Loerincik Yves, Rossi Vincent, Margni Manuele, Jolliet Olivier (2009): Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). Journal of Cleaner Production, 17, 1351-1358  https://doi.org/10.1016/j.jclepro.2009.04.011
 
IBGE (Instituto Brasileiro de Geografia e Estatística) (2012): Perfil dos Municípios Brasileiros – 2012. Available at http://www.ibge.gov.br/home/estatistica/economia/perfilmunic/2012/ (access May 2015)
 
ICO (International Coffee Organization) (2014a): Trade statistics. Available at http://www.ico.org/trade_statistics.asp (access June 2015)
 
IPCC (2014): Climate change 2014: Regional Aspects – Central and South American. Geneva, IPCC, 102.
 
Läderach P., Haggar J., Lau C., Eitzinger A., Ovalle O., Baca M., Jarvis A., Lundy M. (2010): Mesoamerican Coffee: Building a Climate Change Adaptation Strategy. Colombia, CIAT policy brief n. 2, Centro Internacional de Agricultura Tropical.
 
Martins Lima D., Tomaz Marcelo A., Lidon Fernando C., DaMatta Fábio M., Ramalho José C. (2014): Combined effects of elevated [CO2] and high temperature on leaf mineral balance in Coffea spp. plants. Climatic Change, 126, 365-379  https://doi.org/10.1007/s10584-014-1236-7
 
Pezzopane José Ricardo Macedo, Castro Fábio da Silveira, Pezzopane José Eduardo Macedo, Bonomo Robson, Saraiva Giselle Sabadim (2010): Zoneamento de risco climático para a cultura do café Conilon no Estado do Espírito Santo. Revista Ciência Agronômica, 41, 341-348  https://doi.org/10.1590/S1806-66902010000300004
 
Rahn E., Läderach P., Baca M., Cressy C., Schroth G., Malin D., van Rikxoort H., Shriver J. (2014): Climate change adaptation, mitigation and livelihood benefits in coffee production: Where are the synergies? Mitigation and Adaptation Strategies for Global Change, 19: 1119–1137.
 
Ramalho J.C., Rodrigues A.P., Semedo J.N., Pais I.P., Martins L.D., Simões-Costa M.C., Leitão A.E., Fortunato A.S., Batista-Santos P., Palos I.M., Tomaz M.A., Scotti-Campos P., Lidon F.C., DaMatta F.M. (2013): Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLoSOne, 8: e82712.
 
van Rikxoort Henk, Schroth Götz, Läderach Peter, Rodríguez-Sánchez Beatriz (2014): Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agronomy for Sustainable Development, 34, 887-897  https://doi.org/10.1007/s13593-014-0223-8
 
Rodrigues V.G.S., Castilla C., Costa R.C., Palm C. (2000): Carbon stocks in agroforestry systems with coffee in Rondônia – Brazil. In: Simpósio de pesquisa dos cafés do Brasil, 1, 2000, Poços de Caldas. Resumos Expandidos. [Poços de Caldas: s.n., 2000]. (In Portuguese)
 
Segura Milena, Kanninen Markku, Suárez Damaris (2006): Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68, 143-150  https://doi.org/10.1007/s10457-006-9005-x
 
Siles Pablo, Harmand Jean-Michel, Vaast Philippe (2010): Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, 78, 269-286  https://doi.org/10.1007/s10457-009-9241-y
 
Soto-Pinto Lorena, Anzueto Manuel, Mendoza Jorge, Ferrer Guillermo Jimenez, de Jong Ben (2010): Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems, 78, 39-51  https://doi.org/10.1007/s10457-009-9247-5
 
Tchibo (2008): Case Study Tchibo Privat Kaffee Rarity Machare. PCF Pilot Project Germany. Berlin, Öko-Institute.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences