Akbarimoghaddam H., Galavi M., Ghanbari A., Panjehkeh N. (2011): Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9: 43–50.
Alam Amirul, Juraimi Abdul Shukor, Yusop Mohd Rafii, Hamid Azizah Abdul, Hakim Abdul (2014): Morpho-physiological and mineral nutrient characterization of 45 collected Purslane (Portulaca oleracea L.) accessions. Bragantia, 73, 426-437
https://doi.org/10.1590/1678-4499.253
Al-Maskri A., Al-Kharusi L., Al-Miqbali H., Khan M.M. (2010): Effects of salinity stress on the growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International Journal of Agriculture and Biology, 12: 377–380.
Ashraf Muhammad (2004): Some important physiological selection criteria for salt tolerance in plants. Flora - Morphology, Distribution, Functional Ecology of Plants, 199, 361-376
https://doi.org/10.1078/0367-2530-00165
Ashraf M., Ali Q. (2008): Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63, 266-273
https://doi.org/10.1016/j.envexpbot.2007.11.008
Aslam R., Bostan N., Nabgha-e-Amen, Maria M., Safdar W. (2011): A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plants Research, 5: 7108–7118.
Bartha C., Fodorpataki L., Martinez-Ballesta M. del C., Popescu O., Carvajal M. (2015): Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. Journal of Applied Botany and Food Quality, 88: 42–48.
Carillo P., Annunziata M.G., Pontecorvo G., Fuggi A., Woodrow P. (2011): Salinity stress and salt tolerance. In: Shanker A.K., Venkateswarlu B. (eds.): Abiotic Stress in Plants – Mechanisms and Adaptations. Rijeka, InTech.
Cheeseman John M. (2015): The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytologist, 206, 557-570
https://doi.org/10.1111/nph.13217
Dajic Z. (2006): Salt stress. In: Madhava R.K.V., Raghavendra A.S., Janardhan R.K. (eds.): Physiology and Molecular Biology of Stress Tolerance in Plants. Dordrecht, Springer.
Demidchik Vadim, Straltsova Darya, Medvedev Sergey S., Pozhvanov Grigoriy A., Sokolik Anatoliy, Yurin Vladimir (2014): Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65, 1259-1270
https://doi.org/10.1093/jxb/eru004
Di Mola Ida, Rouphael Youssef, Colla Giuseppe, Fagnano Massimo, Paradiso Roberta, Mori Mauro (2017): Morphophysiological Traits and Nitrate Content of Greenhouse Lettuce as Affected by Irrigation with Saline Water. HortScience, 52, 1716-1721
https://doi.org/10.21273/HORTSCI12501-17
Fakhrfeshani M., Shahriari-Ahmadi F., Niazi A., Moshtaghi N., Zare-Mehrjerdi M. (2015): The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis. Journal of Plant Molecular Breeding, 3: 1–10.
Flowers Timothy J., Colmer Timothy D. (2008): Salinity tolerance in halophytes*. New Phytologist, 179, 945-963
https://doi.org/10.1111/j.1469-8137.2008.02531.x
Geilfus Christoph-Martin (2018): Chloride: from Nutrient to Toxicant. Plant and Cell Physiology, 59, 877-886
https://doi.org/10.1093/pcp/pcy071
MF Gu, Li N., TY Shao, XH Long, Brestič M., HB Shao, JB Li, rki S. (2016): Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water . Plant, Soil and Environment, 62, 314-320
https://doi.org/10.17221/771/2015-PSE
James R. A., Blake C., Byrt C. S., Munns R. (2011): Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 62, 2939-2947
https://doi.org/10.1093/jxb/err003
Kafi Mohammad, Rahimi Zainab (2011): Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (
Portulaca oleracea L.). Soil Science and Plant Nutrition, 57, 341-347
https://doi.org/10.1080/00380768.2011.567398
Kim S.K., Kim I.K., Lee G.J. (2011): Growth responses of New Zealand spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity. CNU Journal of Agricultural Science, 38: 631–639.
MAATHUIS F (): K+Nutrition and Na+Toxicity: The Basis of Cellular K+/Na+Ratios. Annals of Botany, 84, 123-133
https://doi.org/10.1006/anbo.1999.0912
Mahajan Shilpi, Tuteja Narendra (2005): Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139-158
https://doi.org/10.1016/j.abb.2005.10.018
Mahmoudi Hela, Kaddour Rym, Huang Jun, Nasri Nawel, Olfa Baâtour, M’Rah Sabah, Hannoufa Abdelali, Lachaâl Mokhtar, Ouerghi Zeineb (2011): Varied tolerance to NaCl salinity is related to biochemical changes in two contrasting lettuce genotypes. Acta Physiologiae Plantarum, 33, 1613-1622
https://doi.org/10.1007/s11738-010-0696-2
Mansour Mohamed Magdy F., Salama Karima H.A. (2004): Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany, 52, 113-122
https://doi.org/10.1016/j.envexpbot.2004.01.009
Munns Rana, Tester Mark (2008): Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681
https://doi.org/10.1146/annurev.arplant.59.032607.092911
Neves M.A., Miguel M.G., Marques C., Panagopoulos T., Beltrão J.
(2008): The combined effects of salts and calcium on growth and mineral accumulation on Tetragonia tetragonioides. WSEAS Transactions on Environment and Development, 4: 1–5.
Nikalje Ganesh C., Srivastava Ashish K., Pandey Girdhar K., Suprasanna Penna (2018): Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degradation & Development, 29, 1081-1095
https://doi.org/10.1002/ldr.2819
Ryuk Jin Ah, Ko Byoung-Seob, Lee Hye Won, Kim Da Sol, Kang Suna, Lee Yong Hyen, Park Sunmin (2017):
Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines. Experimental Biology and Medicine, 242, 593-605
https://doi.org/10.1177/1535370216683835
Shrivastava Pooja, Kumar Rajesh (2015): Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123-131
https://doi.org/10.1016/j.sjbs.2014.12.001
ZW Sun, LK Ren, JW Fan, Li Q., KJ Wang, MM Guo, Wang L., Li J., GX Zhang, ZY Yang, Chen F., XN Li (2016): Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance . Plant, Soil and Environment, 62, 515-521
https://doi.org/10.17221/529/2016-PSE
Tavakkoli Ehsan, Rengasamy Pichu, McDonald Glenn K. (2010): High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61, 4449-4459
https://doi.org/10.1093/jxb/erq251
TESTER M. (): Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 91, 503-527
https://doi.org/10.1093/aob/mcg058
Uddin M.K., Juraimi A.S., Anwar F., Hossain M.A., Alam M.A. (2012): Effect of salinity on proximate mineral composition of purslane (Portulaca oleracea L.). Australian Journal of Crop Science, 12: 1732–1736.
Ünlükara Ali, Cemek Bilal, Karaman Sedat, Erşahin Sabit (2008): Response of lettuce (
Lactuca sativa var.
crispa ) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36, 265-273
https://doi.org/10.1080/01140670809510243
Yousif B.S., Nguyen N.T., Fukuda Y., Hakata H., Okamoto Y., Masaoka Y., Saneoka H. (2010): Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (Tetragonia tetragonioides) and water spinach (Ipomoea aquatica). International Journal of Agriculture and Biology, 12: 211–216.
Zakharin A. A., Panichkin L. A. (2009): Glycophyte salt resistance. Russian Journal of Plant Physiology, 56, 94-103
https://doi.org/10.1134/S1021443709010142