Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system

https://doi.org/10.17221/659/2020-PSECitation:

Alharbi B.M., Elhakem A.H., Alnusairi G.S.H., Mona H., Soliman M.H., Hakeem K.R., Hasan Md.M., Abdelhamid M.T. (2021): Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ., 67: 208–220.

 

download PDF

Soybean plants grown under NaCl were foliar sprayed twice with melatonin (MLT). Results revealed that salt stress reduced growth, biomass accumulation, photosynthesis, mineral uptake, the content of δ-aminolevulinic acid, chlorophylls, carotenoids and PSII efficiency. However, MLT application enhanced pigment synthesis and PSII activity. MLT up-regulated the antioxidant system and glyoxalase function resulting in reduced accumulation of reactive oxygen species (ROS). Reduced ROS in MLT-treated plants protected membrane functioning by reducing lipid peroxidation, electrolyte leakage and lipoxygenase activity. Nevertheless, MLT application reduced methylglyoxal accumulation while increased the content of reduced glutathione and ascorbic acid. It could be concluded that exogenous MLT mitigated the salt stress damage in soybean plants by improving photosynthesis, antioxidant systems, controlling ion homeostasis and minimising excessive ROS accumulation.

 

References:
Ahanger M.A., Agarwal R.M. (2017): Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 115: 449–460. https://doi.org/10.1016/j.plaphy.2017.04.017
 
Arnon D.I. (1949): Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1. https://doi.org/10.1104/pp.24.1.1
 
Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205–207. https://doi.org/10.1007/BF00018060
 
Beyer W.F.Jr., Fridovich I. (1987): Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161: 559–566. https://doi.org/10.1016/0003-2697(87)90489-1
 
Chapman H.D. (1965): Cation-exchange capacity. In: Norman A.G. (ed.): Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. New York, John Wiley & Sons, 891–901. ISBN:9780891183747
 
Chen Y.E., Mao J.J., Sun L.Q., Huang B., Ding C.B., Gu Y., Liao J.Q., Hu C., Zhang Z.W., Yuan S., Yuan M. (2018): Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiologia Plantarum, 164: 349–363. https://doi.org/10.1111/ppl.12737
 
Dawood M.G., Abdelhamid M.T., Schmidhalter U. (2014): Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris L.). Journal of Horticultural Science and Biotechnolgy, 89: 185–192. https://doi.org/10.1080/14620316.2014.11513067
 
Dubbels R., Reiter R.J., Klenke E., Goebel A., Schnakenberg E., Ehlers C., Schiwara H.W., Schloot W. (1995): Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18: 28–31. https://doi.org/10.1111/j.1600-079X.1995.tb00136.x
 
Egamberdieva D., Wirth S., Jabborova D., Räsänen L.A., Liao H. (2017): Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. Journal of Plant Interactions, 12: 100–107. https://doi.org/10.1080/17429145.2017.1294212
 
El-Lethy S.R., Abdelhamid M.T., Reda F. (2013): Effect of potassium application on wheat (Triticum aestivum L.) cultivars grown under salinity stress. World Applied Sciences Journal, 26: 840–850.
 
Ellman G.L. (1959): Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82: 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
 
Foyer C.H., Halliwell B. (1976): The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133: 21–25. https://doi.org/10.1007/BF00386001
 
Foyer C.H., Shigeoka S. (2011): Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155: 93–100. https://doi.org/10.1104/pp.110.166181
 
Grieve C.M., Grattan S.R. (1983): Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70: 303–307. https://doi.org/10.1007/BF02374789
 
Hasan Md.M., Skalicky M., Jahan M.S., Hossain Md.N., Anwar Z., Nie Z.F., Alabdallah N.M., Brestic M., Hejnak V., Fang X.W. (2021): Spermine: its emerging role in regulating drought stress responses in plants. Cells, 10: 261. https://doi.org/10.3390/cells10020261
 
Hasan Md.M., Ali Md.A., Soliman M.H., Alqarawi A.A., Abd_Allah E.F., Fang X.W. (2020a): Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA–GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress. Journal of Plant Interaction, 15: 371–385. https://doi.org/10.1080/17429145.2020.1832267
 
Hasan Md.M., Alharby H.F., Uddin Md.N., Ali Md.A., Anwar Y., Fang X.W., Hakeem K.R., Alzahrani Y., Hajar A.S. (2020b): Magnetized water confers drought stress tolerance in Moringa biotype via modulation of growth, gas exchange, lipid peroxidation and antioxidant activity. Polish Journal of Environmental Studies, 29: 1625–1636. https://doi.org/10.15244/pjoes/110347
 
Hasan Md.M., Alharby H.F., Hajar A.S., Hakeem K.R., Alzahrani Y. (2019): The effect of magnetized water on the growth and physiological conditions of Moringa species under drought stress. Polish Journal of Environmental Studies, 28: 1145–1155. https://doi.org/10.15244/pjoes/85879
 
Hasan Md.M., Alharby H.F., Hajar A.S., Hakeem K.R., Alzahrani T. (2018): Effects of magnetized water on phenolic compounds, lipid peroxidation and antioxidant activity of Moringa species under drought stress. Journal of Animal and Plant Sciences, 28: 803–810.
 
Hasanuzzaman M., Alam Md.M., Nahar K., Jubayer-Al-Mahmud, Ahamed K.U., Fujita M. (2014): Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Australian Journal of Crop Sciences, 8: 631–639.
 
Hasanuzzaman M., Hossain M.A., Fujita M. (2011): Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports, 5: 353. https://doi.org/10.1007/s11816-011-0189-9
 
He Z.Q., He C.X., Zhang Z.B., Zou Z.R., Wang H.S. (2007): Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59: 128–133. https://doi.org/10.1016/j.colsurfb.2007.04.023
 
Heath R.L., Packer L. (1968): Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189–198.
 
Hu Z.R., Fan J.B., Xie Y., Amombo E., Liu A., Gitau M.M., Khaldun A.B.M., Chen L., Fu J.M. (2016): Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiology and Biochemistry, 100: 94–104. https://doi.org/10.1016/j.plaphy.2016.01.008
 
Jahan M.S., Wang Y., Shu S., Zhong M., Chen Z., Wu J.Q., Sun J., Guo S.R. (2019a): Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae, 247: 421–429. https://doi.org/10.1016/j.scienta.2018.12.047
 
Jahan M.S., Shu S., Wang Y., Chen Z., He M.M., Tao M.Q., Sun J., Guo S.R. (2019b): Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biology, 19: 414. https://doi.org/10.1186/s12870-019-1992-7
 
Jahan M.S., Guo S.R., Baloch A.R., Sun J., Shu S., Wang Y., Ahammed G.J., Kabir K., Roy R. (2020): Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicology and Environmetal Safety, 197: 110593. https://doi.org/10.1016/j.ecoenv.2020.110593
 
Jia Z.S., Tang M.C., Wu J.M. (1999): The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
 
Kaya C., Okant M., Ugurlar F., Alyemeni M.N., Ashraf M., Ahmad P. (2019): Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere, 225: 627–638. https://doi.org/10.1016/j.chemosphere.2019.03.026
 
Khan A., Anwar Y., Hasan Md.M., Iqbal A., Ali M., Alharby H.F., Hakeem K.R., Hasanuzzaman M. (2017): Attenuation of drought stress in Brassica seedlings with exogenous application of Ca2+ and H2O2. Plants (Basel), 6: 20. https://doi.org/10.3390/plants6020020
 
Krieger-Liszkay A., Fufezan C., Trebst A. (2008): Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research, 98: 551–564. https://doi.org/10.1007/s11120-008-9349-3
 
Li J.M., Hu L.P., Zhang L., Pan X.B., Hu X.H. (2015): Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biology, 15: 303. https://doi.org/10.1186/s12870-015-0699-7
 
Luck H. (1974): Catalase in methods of enzymatic analysis. In: Bergmeyer H.U. (ed.): Methods of Enzymatic analysis V4. New York, Academic Press, 682. ISBN: 9780323161329
 
Meng J.F., Xu T.F., Wang Z.Z., Fang Y.L., Xi Z.M., Zhang Z.W. (2014): The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research, 57: 200–212. https://doi.org/10.1111/jpi.12159
 
Mohanty P., Hayashi H., Papageorgiou G.C., Murata N. (1993): Stabilization of the Mn-cluster of the oxygen-evolving complex by glycinebetaine. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1144: 92–96. https://doi.org/10.1016/0005-2728(93)90035-E
 
Mostofa M.G., Saegusa D., Fujita M., Tran L.-S.P. (2015): Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Frontier in Plant Science, 6: 1055. https://doi.org/10.3389/fpls.2015.01055
 
Mukherjee S.P., Choudhuri M.A. (1983): Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58: 166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
 
Munns R., Tester M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
 
Naghizadeh M., Kabiri R., Hatami A., Oloumi H., Nasibi F., Tahmasei Z. (2019): Exogenous application of melatonin mitigates the adverse effects of drought stress on morpho-physiological traits and secondary metabolites in Moldavian balm (Dracocephalum moldavica). Physiology and Molecular Biology of Plants, 25: 881–894. https://doi.org/10.1007/s12298-019-00674-4
 
Nahar K., Hasanuzzaman M., Alam Md.M., Rahman A., Suzuki T., Fujita M. (2016): Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicolgy and Environmental Safety, 126: 245–255. https://doi.org/10.1016/j.ecoenv.2015.12.026
 
Najar R., Aydi S., Sassi-Aydi S., Zarai A., Abdelly C. (2019): Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems, 153: 88–97. https://doi.org/10.1080/11263504.2018.1461701
 
Nakano Y., Asada K. (1981): Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867–880.
 
Plesa I.M., González-Orenga S., Al Hassan M., Sestras A.F., Vicente O., Prohens J., Sestras R.E., Boscaiu M. (2018): Effects of drought and salinity on European larch (Larix decidua Mill.) seedlings. Forests, 9: 320. https://doi.org/10.3390/f9060320
 
Rady M.M., Mervat Sh.S., Safaa R.E.L., Ebtihal M.A.E., Magdi T.A. (2015): Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. Journal of Horticultural Science and Biotechnology, 90: 195–202. https://doi.org/10.1080/14620316.2015.11513172
 
Rafiq M., Shahid M., Abbas G., Shamshad S., Khalid S., Niazi N.K., Dumat C. (2017): Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. International Journal of Phytoremidiation, 19: 662–669. https://doi.org/10.1080/15226514.2016.1278426
 
Rasool S., Ahmad A., Siddiqi T.O., Ahmad P. (2013): Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 35: 1039–1050. https://doi.org/10.1007/s11738-012-1142-4
 
Ruiz-Lozano J.M., Porcel R., Azcón C., Aroca R. (2012): Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 63: 4033–4044. https://doi.org/10.1093/jxb/ers126
 
Sadak M.Sh., Abdelhamid M.T. (2015): Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanzen, 67: 119–129. https://doi.org/10.1007/s10343-015-0344-2
 
Sairam R.K., Shukla D.S., Saxena D.C. (1997): Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plantarum, 39: 357–364. https://doi.org/10.1023/A:1001009812864
 
Sakamoto A., Murata N. (2002): The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell and Environment, 25: 163–171. https://doi.org/10.1046/j.0016-8025.2001.00790.x
 
Shapiro S.S., Wilk M.B. (1965): An analysis of variance test for normality (complete samples). Biometrika, 52: 591–611. https://doi.org/10.1093/biomet/52.3-4.591
 
Shi H.T., Reiter R.J., Tan D.X., Chan Z.L. (2015a): INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. Journal of Pineal Research, 58: 26–33. https://doi.org/10.1111/jpi.12188
 
Shi H.T., Tan D.X., Reiter R.J., Ye T.T., Yang F., Chan Z.L. (2015b): Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. Journal of Pineal Research, 58: 335–342. https://doi.org/10.1111/jpi.12219
 
Shimada K., Fujikawa K., Yahara K., Nakamura T. (1992): Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agriculture and Food Chemistry, 40: 945–948. https://doi.org/10.1021/jf00018a005
 
Singleton V.L., Rossi J.A. (1965): Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16: 144–158.
 
Soliman M., Elkelish A., Souad T., Alhaithloul H., Farooq M. (2020a): Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiology and Molecular Biology of Plants, 26: 501–511. https://doi.org/10.1007/s12298-020-00765-7
 
Soliman M.H., Abdulmajeed A.M., Alhaithloul H., Alharbi B.M., El-Esawi M.A., Hasanuzzaman M., Elkelish A. (2020b): Saponin biopriming positively stimulates antioxidants defense, osmolytes metabolism and ionic status to confer salt stress tolerance in soybean. Acta Physiologiae Plantarum, 42: 114. https://doi.org/10.1007/s11738-020-03098-w
 
Turan S., Tripathy B.C. (2015): Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiologia Plantarum, 153: 477–491. https://doi.org/10.1111/ppl.12250
 
Vass I., Cser K. (2009): Janus-faced charge recombinations in photosystem II photoinhibition. Trends in Plant Science, 14: 200–205. https://doi.org/10.1016/j.tplants.2009.01.009
 
Velikova V., Yordanov I., Edreva A. (2000): Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151: 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
 
Wang L.Y., Liu J.L., Wang W.X., Sun Y. (2016): Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 54: 19–27. https://doi.org/10.1007/s11099-015-0140-3
 
Wei W., Li Q.T., Chu Y.N., Reiter R.J., Yu X.M., Zhu D.H., Zhang W.K., Ma B., Lin Q., Zhang J.S., Chen S.Y. (2015): Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66: 695–707. https://doi.org/10.1093/jxb/eru392
 
Wild R., Ooi L., Srikanth V., Münch G. (2012): A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-L-cysteine assay. Analytical and Bioanalytical Chemistry, 403: 2577–2581. https://doi.org/10.1007/s00216-012-6086-4
 
Yang H.Q., Wu F.H., Cheng J.Y. (2011): Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chemistry, 127: 1237–1242. https://doi.org/10.1016/j.foodchem.2011.02.011
 
Yang X.L., Xu H., Li D., Gao X., Li T.L., Wang R. (2018): Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica, 56: 884–892. https://doi.org/10.1007/s11099-017-0748-6
 
Zhao D.Q., Wang R., Meng J.S., Li Z.Y., Wu Y.Q., Tao J. (2017): Ameliorative effects of melatonin on dark-induced leaf senescence in gardenia (Gardenia jasminoides Ellis): leaf morphology, anatomy, physiology and transcriptome. Scientific Reports, 7: 10423. https://doi.org/10.1038/s41598-017-10799-9
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti