Effect of drought and waterlogging on saccharides and amino acids content in potato tubers


Orsák M., Kotíková Z., Hnilička F., Lachman J. (2021): Effect of drought and waterlogging stresses on saccharides and amino acids content in potato tubers. Plant Soil Environ., 67: 408–416.


download PDF

The study was focused on the effect of drought and waterlogging stresses in two-year pot experiments in the peat substrate on the content of glucose, fructose and sucrose and free amino acids in potato tubers of four cultivars (yellow-fleshed Laura, Marabel, Milva and blue-fleshed Valfi) after 71 days of exposure to stresses conditions (BBCH 909). Drought and waterlogging increased levels of fructose, glucose, and sucrose in three potato cultivars except for cv. Laura. Drought stress increased l-proline (+248.4%), l-hydroxyproline (+135.3%), l-arginine (+29.97%), l-glutamic acid (+29.09%) and l-leucine (+22.58%) contents in all analysed cultivars. Moreover, the high effect of drought stress on an increase of l-phenylalanine, l-histidine, l-threonine, and total free amino acids content of the cvs. Laura, Valfi and Marabel has been observed. A comparison of the effects of drought and waterlogging stresses on the content of total amino acids showed an increase under drought and a decrease under waterlogging conditions. On average, of all cultivars, waterlogging stress caused an increase of l-tyrosine content, whereas drought stress decrease. In addition, drought stress caused a significant increase of l-proline in all cultivars while waterlogging its decrease. Obtained results confirmed different responses of susceptible or resistant cultivars to abiotic stresses.


Bandurska H., Niedziela J., Pietrowska-Borek M., Nuc K., Chadzinikolau T., Radzikowska D. (2017): Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiology and Biochemistry, 118: 427–437. https://doi.org/10.1016/j.plaphy.2017.07.006
Bündig C., Vu T.H., Meise P., Seddig S., Schum A., Winkelmann T. (2017): Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. Journal of Agronomy and Crop Science, 203: 206–218. https://doi.org/10.1111/jac.12186
Ezekiel R., Singh N., Sharma S., Kaur A. (2013): Beneficial phytochemicals in potato – a review. Food Research International, 50: 487–496. https://doi.org/10.1016/j.foodres.2011.04.025
Häusler R.E., Ludewig F., Krueger S. (2014): Amino acids − a life between metabolism and signaling. Plant Science, 229: 225–237. https://doi.org/10.1016/j.plantsci.2014.09.011
Hildebrandt T.M., Nunes Nesi A., Araújo W.R., Braun H.-P. (2015): Amino acid catabolism in plants. Molecular Plant, 8: 1563–1579. https://doi.org/10.1016/j.molp.2015.09.005
Hirut B., Shimelis H., Fentahun M., Bonierbale M., Gastelo M., Asfaw A. (2017): Combining ability of highland tropic adapted potato for tuber yield and yield components under drought. PLoS One, 12: e0181541. https://doi.org/10.1371/journal.pone.0181541
Iqbal N., Umar S., Khan N.A., Khan M.I.R. (2014): A new perspective of new phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany, 100: 34–42. https://doi.org/10.1016/j.envexpbot.2013.12.006
Joshi V., Joung J.G., Fei Z.J., Jander G. (2010): Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39: 933–947. https://doi.org/10.1007/s00726-010-0505-7
Krasensky J., Jonak C. (2012): Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63: 1593–1608. https://doi.org/10.1093/jxb/err460
Lehmann T., Pollmann S. (2009): Gene expression and characterization of a stress-induced tyrosine decarboxylase from Arabidopsis thaliana. FEBS Letters, 583: 1895–1900. https://doi.org/10.1016/j.febslet.2009.05.017
Maghsoodi M., Razmjoo J., Gheysari M. (2017): Application of biochemical markers for the assessment of drought tolerance in alfalfa (Medicago sativa L.) cultivars. Grassland Science, 63: 3–14. https://doi.org/10.1111/grs.12144
Monneveux P., Ramírez D., Pino M.-T. (2013): Drought tolerance in potato (S. tuberosum L.). Can we learn from drought tolerance research in cereals? Plant Science, 205–206: 76–86.
Muttucumaru N., Powers S.J., Elmore S.J., Mottram D.S., Halford N.G. (2015): Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato. Journal of Agricultural and Food Chemistry, 63: 2566–2575. https://doi.org/10.1021/jf506031w
Obata T., Fernie A.R. (2012): The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69: 3225–3243. https://doi.org/10.1007/s00018-012-1091-5
Orsák M., Kotíková Z., Hnilička F., Lachman J., Stanovič R. (2020): Effect of drought and waterlogging on hydrophilic antioxidants and their activity in potato tubers. Plant, Soil and Environment, 66: 128–134. https://doi.org/10.17221/520/2019-PSE
Pathirana I., Thavarajah P., Siva N., Wickramasinghe A.N.K., Smith P., Thavarajah D. (2017): Moisture deficit effects on kale (Brassica oleracea L. var. acephala) biomass, mineral, and low molecular weight carbohydrate concentrations. Scientia Horticulturae, 226: 216–222. https://doi.org/10.1016/j.scienta.2017.08.050
Pavlíková D., Zemanová V., Procházková D., Pavlík M., Száková J., Wilhelmová N. (2014): The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicology and Environmental Safety, 100: 166–170. https://doi.org/10.1016/j.ecoenv.2013.10.028
Per T.S., Khan N.A., Reddy P.S., Masood A., Hasanuzzaman M., Khan M.I.R., Anjum N.A. (2017): Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115: 126–140. https://doi.org/10.1016/j.plaphy.2017.03.018
Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. (2016): Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 109: 54–61. https://doi.org/10.1016/j.plaphy.2016.09.005
Szabados L., Savouré A. (2009): Proline: a multifunctional amino acid. Trends in Plant Science, 15: 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
Schafleitner R., Gutierrez R., Espino R., Gaudin A., Pérez J., Martínez M., Domínguez A., Tincopa L., Alvaraqdo C., Numberto G., Bonierbale M. (2007): Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Research, 50: 71–85. https://doi.org/10.1007/s11540-007-9030-9
Song Q.H., Liu C.Y., Bachir D.G., Chen L., Hu Y.G. (2017): Drought resistance of new synthetic hexaploid wheat accessions evaluated by multiple traits and antioxidant enzyme activity. Field Crops Research, 210: 91–103. https://doi.org/10.1016/j.fcr.2017.05.028
Świędrych A., Lorenc-Kukuła K., Skirycz A., Szopa J. (2004): The catecholamine biosynthesis route in potato is affected by stress. Plant Physiology and Biochemistry, 42: 593–600. https://doi.org/10.1016/j.plaphy.2004.07.002
Wegener C.B., Jürgens H.-U., Jansen G. (2017): Drought stress affects bioactive compounds in potatoes (Solanum tuberosum L.) relevant to non-communicable diseases. Functional Foods in Health and Disease, 7: 17–35. https://doi.org/10.31989/ffhd.v7i1.279
Wu P., Wu C.B., Zhou B.Y. (2017): Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa carambola. Horticultural Plant Journal, 3: 60–66. https://doi.org/10.1016/j.hpj.2017.07.008
Xia H.Q., Xu T., Zhang J., Shen K., Li Z.Y., Liu J.G. (2020): Drought-induced responses of nitrogen metabolism in Ipomoea batatas. Plants, 9: 1341. https://doi.org/10.3390/plants9101341
Yoon Y.-E., Kuppusamy S., Cho K.M., Kim P.J., Kwack Y.-B., Lee Y.-B. (2017): Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chemistry, 215: 185–192. https://doi.org/10.1016/j.foodchem.2016.07.167
Zhu Q.D., Wang L., Dong Q.L., Chang S., Wen K.X., Jia S.H., Chu Z.L., Wang H.M., Gao P., Zhao H.P., Han S.C., Wang Y.D. (2017): FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots. Journal of Plant Physiology, 215: 65–72. https://doi.org/10.1016/j.jplph.2017.05.007
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti