Silicon ameliorates the adverse effects of salt stress on sainfoin (Onobrychis viciaefolia) seedlings

https://doi.org/10.17221/665/2017-PSECitation:Wu G., Liu H., Feng R., Wang C., Du Y. (2017): Silicon ameliorates the adverse effects of salt stress on sainfoin (Onobrychis viciaefolia) seedlings. Plant Soil Environ., 63: 545-551.
download PDF
The objective of this study was to investigate whether the application of silicon (Si) ameliorates the detrimental effects of salinity stress on sainfoin (Onobrychis viciaefolia). Three-week-old seedlings were exposed to 0 and 100 mmol/L NaCl with or without 1 mmol/L Si for 7 days. The results showed that salinity stress significantly reduced plant growth, shoot chlorophyll content and root K+ concentration, but increased shoot malondialdehyde (MDA) concentration, relative membrane permeability (RMP) and Na+ concentrations of shoot and root in sainfoin compared to the control (no added Si and NaCl). However, the addition of Si significantly enhanced growth, chlorophyll content of shoot, K+ and soluble sugars accumulation in root, while it reduced shoot MDA concentration, RMP and Na+ accumulation of shoot and root in plants under salt stress. It is clear that silicon ameliorates the adverse effects of salt stress on sainfoin by limiting Na+ uptake and enhancing selectivity for K+, and by adjusting the levels of organic solutes. The present study provides physiological insights into understanding the roles of silicon in salt tolerance in sainfoin.
References:
Abbas Tahira, Balal Rashad Mukhtar, Shahid Muhammad Adnan, Pervez Muhammad Aslam, Ayyub Chaudhary Muhammad, Aqueel Muhammad Anjum, Javaid Muhammad Mansoor (2015): Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum, 37, -  https://doi.org/10.1007/s11738-014-1768-5
 
Al-aghabary Khalid, Zhu Zhujun, Shi Qinhua (2005): Influence of Silicon Supply on Chlorophyll Content, Chlorophyll Fluorescence, and Antioxidative Enzyme Activities in Tomato Plants Under Salt Stress. Journal of Plant Nutrition, 27, 2101-2115  https://doi.org/10.1081/PLN-200034641
 
Ashraf M., Rahmatullah , Afzal M., Ahmed R., Mujeeb F., Sarwar A., Ali L. (2010): Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326, 381-391  https://doi.org/10.1007/s11104-009-0019-9
 
Baimiev Al. Kh., Baimiev An. Kh., Gubaidullin I. I., Kulikova O. L., Chemeris A. V. (2007): Bacteria closely related to Phyllobacterium trifolii according to their 16S rRNA gene are discovered in the nodules of Hungarian sainfoin. Russian Journal of Genetics, 43, 587-590  https://doi.org/10.1134/S1022795407050146
 
Bates L. S., Waldren R. P., Teare I. D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207  https://doi.org/10.1007/BF00018060
 
Hayot Carbonero Christine, Mueller-Harvey Irene, Brown Terence A., Smith Lydia (2011): Sainfoin ( Onobrychis viciifolia): a beneficial forage legume. Plant Genetic Resources, 9, 70-85  https://doi.org/10.1017/S1479262110000328
 
Gibon Y., Bessieres M.A., Larher F. (1997): Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant, Cell and Environment, 20: 329–340.
 
Gill Sarvajeet Singh, Tuteja Narendra (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930  https://doi.org/10.1016/j.plaphy.2010.08.016
 
Gupta Bhaskar, Huang Bingru (2014): Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18  https://doi.org/10.1155/2014/701596
 
Guntzer Flore, Keller Catherine, Meunier Jean-Dominique (2012): Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32, 201-213  https://doi.org/10.1007/s13593-011-0039-8
 
Guo Qiang, Meng Lin, Mao Peichun, Tian Xiaoxia (2013): Role of Silicon in Alleviating Salt-Induced Toxicity in White Clover. Bulletin of Environmental Contamination and Toxicology, 91, 213-216  https://doi.org/10.1007/s00128-013-1034-3
 
GONG H. J., RANDALL D. P., FLOWERS T. J. (2006): Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell and Environment, 29, 1970-1979  https://doi.org/10.1111/j.1365-3040.2006.01572.x
 
Kronzucker Herbert J., Coskun Devrim, Schulze Lasse M., Wong Jessie R., Britto Dev T. (2013): Sodium as nutrient and toxicant. Plant and Soil, 369, 1-23  https://doi.org/10.1007/s11104-013-1801-2
 
Li Huanli, Zhu Yongxing, Hu Yanhong, Han Weihua, Gong Haijun (2015): Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 37, -  https://doi.org/10.1007/s11738-015-1818-7
 
Li Yue-Tong, Zhang Wen-Jin, Cui Jia-Jia, Lang Duo-Yong, Li Ming, Zhao Qi-Peng, Zhang Xin-Hui (2016): Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Acta Physiologiae Plantarum, 38, -  https://doi.org/10.1007/s11738-016-2108-8
 
LIU HUA, WANG QIUQING, YU MENGMENG, ZHANG YANYAN, WU YINGBAO, ZHANG HONGXIA (2008): Transgenic salt-tolerant sugar beet ( Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na + /H + antiporter gene, AtNHX3 , accumulates more soluble sugar but less salt in storage roots. Plant, Cell & Environment, 31, 1325-1334  https://doi.org/10.1111/j.1365-3040.2008.01838.x
 
Lu Y., Lei J.-Q., Zeng F.-J., Zhang B., Liu G.-J., Liu B., Li X.-Y. (2017): Effect of NaCl-induced changes in growth, photosynthetic characteristics, water status and enzymatic antioxidant system of Calligonum caput-medusae seedlings. Photosynthetica, 55, 96-106  https://doi.org/10.1007/s11099-016-0234-6
 
Ma J.F., Yamaji N., Mitani-Ueno N. (2011): Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 87: 377–385.
 
Mateos-Naranjo Enrique, Andrades-Moreno Luis, Davy Anthony J. (2013): Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiology and Biochemistry, 63, 115-121  https://doi.org/10.1016/j.plaphy.2012.11.015
 
Munns Rana, Tester Mark (2008): Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681  https://doi.org/10.1146/annurev.arplant.59.032607.092911
 
Mora-Ortiz Marina, Swain Martin T., Vickers Martin J., Hegarty Matthew J., Kelly Rhys, Smith Lydia M. J., Skøt Leif (2016): De-novo transcriptome assembly for gene identification, analysis, annotation, and molecular marker discovery in Onobrychis viciifolia. BMC Genomics, 17, -  https://doi.org/10.1186/s12864-016-3083-6
 
Peever T. L., Higgins V. J. (1989): Electrolyte Leakage, Lipoxygenase, and Lipid Peroxidation Induced in Tomato Leaf Tissue by Specific and Nonspecific Elicitors from Cladosporium fulvum. PLANT PHYSIOLOGY, 90, 867-875  https://doi.org/10.1104/pp.90.3.867
 
Rizwan Muhammad, Ali Shafaqat, Ibrahim Muhammad, Farid Mujahid, Adrees Muhammad, Bharwana Saima Aslam, Zia-ur-Rehman Muhammad, Qayyum Muhammad Farooq, Abbas Farhat (2015): Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environmental Science and Pollution Research, 22, 15416-15431  https://doi.org/10.1007/s11356-015-5305-x
 
Soundararajan Prabhakaran, Manivannan Abinaya, Ko Chung Ho, Muneer Sowbiya, Jeong Byoung Ryong (2017): Leaf Physiological and Proteomic Analysis to Elucidate Silicon Induced Adaptive Response under Salt Stress in Rosa hybrida ‘Rock Fire’. International Journal of Molecular Sciences, 18, 1768-  https://doi.org/10.3390/ijms18081768
 
Tuna A. Levent, Kaya Cengiz, Higgs David, Murillo-Amador Bernardo, Aydemir Salih, Girgin Ali R. (2008): Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62, 10-16  https://doi.org/10.1016/j.envexpbot.2007.06.006
 
Wang Suomin, Zhao Guiqin, Gao Yongsheng, Tang Zhangcheng, Zhang Chenglie (2005): Puccinellia tenuiflora Exhibits Stronger Selectivity for K + over Na + than Wheat. Journal of Plant Nutrition, 27, 1841-1857  https://doi.org/10.1081/PLN-200026435
 
Wang S.-M., Zhang J.-L., Flowers T. J. (2007): Low-Affinity Na+ Uptake in the Halophyte Suaeda maritima. PLANT PHYSIOLOGY, 145, 559-571  https://doi.org/10.1104/pp.107.104315
 
Wu Guo-Qiang, Feng Rui-Jun, Liang Na, Yuan Hui-Jun, Sun Wen-Bin (2015): Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regulation, 75, 307-316  https://doi.org/10.1007/s10725-014-9954-4
 
Wu G.-Q., Jia S., Liu H.-L., Wang C.-M., Li S.-J. (2017a): Effect of salt stress on growth, ion accumulation, and distribution in sainfoins (Onobrychis viciaefolia) seedlings. Pratacultural Science, 34: 1661–1668. (In Chinese)
 
Wu G.-Q., Feng R.-J., Li S.-J., Du Y.-Y. (2017b): Exogenous application of proline alleviates salt-induced toxicity in sainfoin seedlings. Journal of Animal and Plant Sciences, 27: 246–251.
 
Yin Lina, Wang Shiwen, Li Jianye, Tanaka Kiyoshi, Oka Mariko (2013): Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 35, 3099-3107  https://doi.org/10.1007/s11738-013-1343-5
 
Yue L.J., Li S.X., Ma Q., Zhou X.R., Wu G.Q., Bao A.K., Zhang J.L., Wang S.M. (2012): NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. Journal of Arid Environments, 87, 153-160  https://doi.org/10.1016/j.jaridenv.2012.06.002
 
Zhang Jin-Lin, Shi Huazhong (2013): Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115, 1-22  https://doi.org/10.1007/s11120-013-9813-6
 
Zushi Kazufumi, Matsuzoe Naotaka, Kitano Masaharu (2009): Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Scientia Horticulturae, 122, 362-368  https://doi.org/10.1016/j.scienta.2009.06.001
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti